• Title/Summary/Keyword: Advanced Numerical Methods

Search Result 246, Processing Time 0.023 seconds

Development of Advanced Numerical techniques to Reduce Grid Dependency in Industrial CFD Applications

  • Blahowsky Hans Peter
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.19-22
    • /
    • 1998
  • Automatic mesh generation procedures applied to industrial now problems lead to complex mesh topologies where usually no special considerations to mesh resolution are taken. In the present study a fast and flexible solution algorithm in combination with generalized higher order discretization schemes is presented and its application to intake port calculation is demonstrated.

  • PDF

EXPERIMENTS FOR VALIDATING NUMERICAL ANALYSIS USING ADVANCED FLOW VISUALIZATION TECHNOLOGIES (첨단 유동가시화 기술을 이용한 수치해석 검증용 실험)

  • Lee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.14-17
    • /
    • 2008
  • Recently, several advanced flow visualization techniques such as Particle Image Velocimetry (PIV) including stereo PIV, holographic PIV, and dynamic PIV have been developed. These advanced techniques have strong potential as the experimental technology which can be used for verifying numerical simulation. In addition, there would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the basic research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is difficult for conventional methods to observe most complicated nano- and bio-fluidic phenomena. In this paper, the basic principle of these advanced visualization techniques and their practical applications which cannot be resolved by conventional methods, such as flow in automotive HVAC system, ship and propeller wake, three-dimensional flow measurement in micro-conduits, and flow around a circulating cylinder will be introduced.

  • PDF

EXPERIMENTS FOR VALIDATING NUMERICAL ANALYSIS USING ADVANCED FLOW VISUALIZATION TECHNOLOGIES (첨단 유동가시화 기술을 이용한 수치해석 검증용 실험)

  • Lee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.14-17
    • /
    • 2008
  • Recently, several advanced flow visualization techniques such as Particle Image Velocimetry (PIV) including stereo PIV, holographic PIV, and dynamic PIV have been developed. These advanced techniques have strong potential as the experimental technology which can be used for verifying numerical simulation. In addition, there would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the basic research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is difficult for conventional methods to observe most complicated nano- and bio-fluidic phenomena. In this paper, the basic principle of these advanced visualization techniques and their practical applications which cannot be resolved by conventional methods, such as flow in automotive HVAC system, ship and propeller wake, three-dimensional flow measurement in micro-conduits, and flow around a circulating cylinder will be introduced.

  • PDF

MULTI-BLOCK BOUNDARY VALUE METHODS FOR ORDINARY DIFFERENTIAL AND DIFFERENTIAL ALGEBRAIC EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.243-291
    • /
    • 2020
  • In this paper, multi-block generalized backward differentiation methods for numerical solutions of ordinary differential and differential algebraic equations are introduced. This class of linear multi-block methods is implemented as multi-block boundary value methods (MB2 VMs). The root distribution of the stability polynomial of the new class of methods are determined using the Wiener-Hopf factorization of a matrix polynomial for the purpose of their correct implementation. Numerical tests, showing the potential of such methods for output of multi-block of solutions of the ordinary differential equations in the new approach are also reported herein. The methods which output multi-block of solutions of the ordinary differential equations on application, are unlike the conventional linear multistep methods which output a solution at a point or the conventional boundary value methods and multi-block methods which output only a block of solutions per step. The MB2 VMs introduced herein is a novel approach at developing very large scale integration methods (VLSIM) in the numerical solution of differential equations.

Preliminary study on the ground behavior at shore connection of submerged floating tunnel using numerical analysis

  • Kang, Seok-Jun;Kim, Jung-Tae;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.133-142
    • /
    • 2020
  • Submerged floating tunnel (SFT) is a type of tunnel which causes the tunnel segments to float in the water. When the SFTs are connected to the ground, the connection between the SFT and the subsea bored tunnel is fragile due to the difference in behavioral characteristics between the two types of tunnels. Therefore, special design and construction methods are needed to ensure the stability of the area around the connection. However, since previous research on the stability of the connection site has not been undertaken enough, the basic step necessitates the evaluation of ground behavior at the shore connection. In this study, the numerical analysis targeting the shore connection between the subsea bored tunnel and the SFT was simulated. The strain concentration at the shore connection was analyzed by numerical simulation and the effects of several factors were examined. The results showed the instability in the ground close to the shore connection due to the imbalance in the behavior of the two types of tunnels; the location of the strain concentration varies with different environmental and structural conditions. It is expected that the results from this study can be utilized in future studies to determine weak points in the shore connection between the submerged floating tunnel and the subsea bored tunnel, and devise methods to mitigate the risks.

An Experimental and Numerical Investigation of the Structural Durability of Vehicle Frames in Small Electric Sweepers (소형전기청소차(Small E-Sweeper) 프레임의 실험 및 수치해석을 통한 구조강도 연구)

  • Cho, Kyu-Chun;Lee, Ji-Sun;Shin, Haeng-Woo;Jang, Myeong-Kyun;Yu, Jik-Su;Jeong, Min-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.116-124
    • /
    • 2021
  • In this study, the reliability of vehicle frames employed in small electric road sweepers was assessed through durability testing. The frames were tested under three conditions, whereby mechanical loads were applied to (1) the entire frame, (2) the front frame, and (3) the rear frame. The strain distributions in the loaded frames were determined through a combination of direct strain gauge measurements and supplementary numerical analysis. While subtle differences were observed between the experimental and numerical analyses, both methods successfully yielded comparable deformation patterns. Thus, the dependence of stress distribution and the state of the frame on loading conditions could be fully identified through our combined structural and numerical analysis.

RK- Methods for Robot Application problems

  • Senthilkumar, Sukumar;Lee, Malrey;Kwon, Tae-Kyu
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.18-20
    • /
    • 2013
  • The significance, is to introduce a novel way to employ the improved Runge-Kutta fifth order five stage method, here after called as Modified IRK(5,5) method, for system of second order robot arm problem and variations in angles at the joints in which parameters governing with two degrees of freedom which requires lesser number of function evaluations per time step as compared to the existing ones, in order to save time and spaceAn ultimate aim of this present paper is to solve application problem such as robot arm and initial value problems by applying Runge-Kutta fifth order five stage numerical techniques. The calculated output for robot arm coincides with exact solution which is found to be better, suitable and feasible for solving real time problems.

A Survey on State Estimation of Nonlinear Systems (비선형 시스템의 상태변수 추정기법 동향)

  • Jang, Hong;Choi, Su-Hang;Lee, Jay Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.277-288
    • /
    • 2014
  • This article reviews various state estimation methods for nonlinear systems, particularly with a perspective of a process control engineer. Nonlinear state estimation methods can be classified into the following two categories: stochastic approaches and deterministic approaches. The current review compares the Bayesian approach, which is mainly a stochastic approach, and the MHE (Moving Horizon Estimation) approach, which is mainly a deterministic approach. Though both methods are reviewed, emphasis is given to the latter as it is particularly well-suited to highly nonlinear systems with slow sampling rates, which are common in chemical process applications. Recent developments in underlying theories and supporting numerical algorithms for MHE are reviewed. Thanks to these developments, applications to large-scale and complex chemical processes are beginning to show up but they are still limited at this point owing to the high numerical complexity of the method.

Numerical Study on the Thermal Characteristics of the Various Cooling Methods in Electronic Equipment

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • Thermal characteristics of the various cooling methods in electronic equipment are studied numerically. A common chip cooling system is modeled as a parallel channel with protruding heat sources. A two-dimensional model has been developed for the numerical analysis of compressible. viscous. laminar flow. and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The assembly consists of two channels formed by two covers and one printed circuit board that is assumed to have three uniform heat source blocks. Various cooling methods are considered to find out the efficient cooling method in a given geometry and heat sources. The velocity and the temperature fields. the local temperature distribution along the surface of blocks. and the maximum temperature in each block are obtained. The results are compared to examine the thermal characteristics of the different cooling methods both quantitatively and qualitatively.