• 제목/요약/키워드: Adjoint Flux

검색결과 27건 처리시간 0.045초

준 일차원 Euler 방정식의 전속도 유동해석을 위한 예조건화 수반변수 기법의 개발 (DEVELOPMENT OF A PRECONDITIONED ADJOINT METHOD FOR ALL-SPEED FLOW ANALYSES OF QUASI ONE-DIMENSIONAL EULER EQUATIONS)

  • 이형로;이승수
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.27-34
    • /
    • 2015
  • In this study, preconditioned adjoint equations for the quasi one-dimensional Euler equations are developed, and their computational benefit at all speed is assessed numerically. The preconditioned adjoint equations are derived without any assumptions on the preconditioning matrix. The dissipation for Roe type numerical flux is also suggested to scale the dissipation term properly at low Mach numbers as well as at high Mach numbers. The new preconditioned method is validated against analytical solutions. The convergence characteristics over wide range of Mach numbers is evaluated. Finally, several inverse designs for the nozzle are conducted and the applicability of the method is demonstrated.

Solving a Nonlinear Inverse Convection Problem Using the Sequential Gradient Method

  • Lee, Woo-Il;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.710-719
    • /
    • 2002
  • This study investigates a nonlinear inverse convection problem for a laminar-forced convective flow between two parallel plates. The upper plate is exposed to unknown heat flux while the lower plate is insulated. The unknown heat flux is determined using temperature measured on the lower plate. The thermophysical properties of the fluid are temperature dependent, which renders the problem nonlinear. The sequential gradient method is applied to this nonlinear inverse problem in order to solve the problem efficiently. The function specification method is incorporated to stabilize the sequential estimation. The corresponding adjoint formalism is provided. Accuracy and stability have been examined for the proposed method with test cases. The tendency of deterministic error is investigated for several parameters. Stable solutions are achieved eve]1 with severely impaired measurement data.

The Variational Method Applied to the Neutron Transport Equation

  • Kim, Sang-Won;Pac, Pong-Youl
    • Nuclear Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.203-208
    • /
    • 1971
  • Noether의 이론을 1차원의 중성자 수송방정식에 적용하였다. 1차원의 Boltzmann방정식의 functional을 불변케 하는 변환을 구했으며 이결과 중성자속과 그의 Adjoint 중성자속의 곱이 보존된다는 법칙을 유도하였다. 이 보존법칙으로부터 1차원의 Boltzmann방정식의 가능한 해의 형태를 얻었고 이것을 이미 알려진 해와 비교하였다.

  • PDF

Development of Galerkin Finite Element Method Three-dimensional Computational Code for the Multigroup Neutron Diffusion Equation with Unstructured Tetrahedron Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.43-54
    • /
    • 2016
  • In the present paper, development of the three-dimensional (3D) computational code based on Galerkin finite element method (GFEM) for solving the multigroup forward/adjoint diffusion equation in both rectangular and hexagonal geometries is reported. Linear approximation of shape functions in the GFEM with unstructured tetrahedron elements is used in the calculation. Both criticality and fixed source calculations may be performed using the developed GFEM-3D computational code. An acceptable level of accuracy at a low computational cost is the main advantage of applying the unstructured tetrahedron elements. The unstructured tetrahedron elements generated with Gambit software are used in the GFEM-3D computational code through a developed interface. The forward/adjoint multiplication factor, forward/adjoint flux distribution, and power distribution in the reactor core are calculated using the power iteration method. Criticality calculations are benchmarked against the valid solution of the neutron diffusion equation for International Atomic Energy Agency (IAEA)-3D and Water-Water Energetic Reactor (VVER)-1000 reactor cores. In addition, validation of the calculations against the $P_1$ approximation of the transport theory is investigated in relation to the liquid metal fast breeder reactor benchmark problem. The neutron fixed source calculations are benchmarked through a comparison with the results obtained from similar computational codes. Finally, an analysis of the sensitivity of calculations to the number of elements is performed.

설계민감도해석과 FEM에 의한 전자소자의 형상최적화 (Design Sensitivity Analysis for Shape Optimization of Electromagnetic Device with Finite Element Method)

  • 류재섭;고창섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.835-837
    • /
    • 2002
  • This paper presents a shape optimization algorithm of electromagnetic devices using the design sensitivity analysis with FEM. The design sensitivity and adjoint variable formulas are derived for the 3D FEM with edge element. This algorithm is applied to 3D electro-magnet pole shape optimization problem to make a uniform flux density at the target region.

  • PDF

A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS

  • Nie, Cunyun;Tan, Min
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.765-778
    • /
    • 2012
  • We construct a symmetric finite volume element (SFVE) scheme for a self-adjoint elliptic problem on tetrahedron grids and prove that our new scheme has optimal convergent order for the solution and has superconvergent order for the flux when grids are quasi-uniform and regular. The symmetry of our scheme is helpful to solve efficiently the corresponding discrete system. Numerical experiments are carried out to confirm the theoretical results.

Improvement and verification of the DeCART code for HTGR core physics analysis

  • Cho, Jin Young;Han, Tae Young;Park, Ho Jin;Hong, Ser Gi;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.13-30
    • /
    • 2019
  • This paper presents the recent improvements in the DeCART code for HTGR analysis. A new 190-group DeCART cross-section library based on ENDF/B-VII.0 was generated using the KAERI library processing system for HTGR. Two methods for the eigen-mode adjoint flux calculation were implemented. An azimuthal angle discretization method based on the Gaussian quadrature was implemented to reduce the error from the azimuthal angle discretization. A two-level parallelization using MPI and OpenMP was adopted for massive parallel computations. A quadratic depletion solver was implemented to reduce the error involved in the Gd depletion. A module to generate equivalent group constants was implemented for the nodal codes. The capabilities of the DeCART code were improved for geometry handling including an approximate treatment of a cylindrical outer boundary, an explicit border model, the R-G-B checker-board model, and a super-cell model for a hexagonal geometry. The newly improved and implemented functionalities were verified against various numerical benchmarks such as OECD/MHTGR-350 benchmark phase III problems, two-dimensional high temperature gas cooled reactor benchmark problems derived from the MHTGR-350 reference design, and numerical benchmark problems based on the compact nuclear power source experiment by comparing the DeCART solutions with the Monte-Carlo reference solutions obtained using the McCARD code.

개선된 중성자 선원 증배법을 이용한 미임계도 평가 (Subcriticality Evaluation Using the Modified Neutron Source Multiplication Method)

  • 윤석균;윈나잉;김명현
    • 에너지공학
    • /
    • 제16권4호
    • /
    • pp.155-163
    • /
    • 2007
  • 원자로의 안전성 확보를 위해 재장전 기간 동안 수행되는 노물리 시험에서 제어봉의 반응도가(reactivity worth) 산출을 위해 노심의 임계도를 측정해야 하고, 기동운전 시에도 반응도 사고를 대비하여 미임계도가 감시되어야 한다. 미임계도나 제어봉가 측정을 위한 연구가 국내외적으로 지속되어 왔으며, 최근에는 일본에서 "개선된 중성자 선원 증배법(Modified Neutron Source Multiplication Method, MNSM)"이 제안되어 기존의 중성자 선원 증배법의 한계를 극복하였다. 본 연구에서는 MNSM을 경희대 교육용원자로 AGN-201에 적용하여 미임계도를 계산하고 새로운 방법의 타당성을 평가하였다. MNSM의 적용을 위해 AGN-201 원자로에 적합한 핵자료집과 중성자수송 전산코드인 TRANSX - PARTISN 체계를 구축하였고, 유효증배계수와 중성자속(flux) 분포, 수반 중성자속(adjoint flux) 분포 등을 계산하여 제어봉위치에 따른 보정인자들을 산출하였다. 원자로의 미임계도 측정값은 $BF_3$ 비례계수관으로 측정한 중성자계수율을 사용하여 확보하였다. 연구 결과로서 MNSM을 사용하여 평가한 미임계도가 전산코드로 계산하여 얻어진 이론적인 미임계도 값에 근접하고 계산된 보정인자도 유효함을 확인하였다.

평면충돌제트에 의한 고온 판 냉각과정의 열전달 해석 (Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet)

  • 안대환;김동식
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.17-27
    • /
    • 2009
  • Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number.