• Title/Summary/Keyword: Adiabatic Temperature History

Search Result 10, Processing Time 0.027 seconds

Compressive Strength Properties of high strength concrete considering Adiabatic temperature rise of hot weather environment (서중환경의 단열온도상승 특성을 고려한 고강도 콘크리트의 압축강도 특성)

  • Lee, Eun Kyoung;Ham, Eun-Young;Koo, Kyung-Mo;Lee, Bo-Kyeong;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.56-57
    • /
    • 2013
  • In this study, in regard to concrete considering variety of admixture content rate, we evaluated property of adiabatic temperature rise. By setting up high temperature history, we evaluated effect to compression strength property of high strength concrete by early high temperature history. As a result, early high temperature history accelerated Hydration reaction of cement and contribute early strength development but it didn't accomplish performance objective in long-term aged.

  • PDF

The Effect of Properties of The Compressive Strength of High-Strength Concrete under High Temperature conditions at an Early Age (초기고온이력이 고강도콘크리트의 압축강도특성에 미치는 영향)

  • Ham, Eun-Young;Kim, Gyu-Yong;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jea-Kang;Miyauchi, Hiroyuki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.115-116
    • /
    • 2013
  • Property of the compressive strength of high strength concrete was investigated in adiabatic temperature history considering hot-weather conditions. As a result, compressive strength of specimens subjected to high temperature history showed more than 120% at 3days of age compare to standard cured specimens. But, at 91days of age showed the incidence of strength less than 100%.

  • PDF

The Properties of Temperature History of Concrete with Surface Insulating Material in Cold Weather Concreting (한중콘크리트 시공시 표면 단열재 변화에 따른 콘크리트의 온도이력 특성)

  • 문학용;신동안;김경민;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.7-11
    • /
    • 2003
  • This study investigate the hydration heat history with variation of surface insulating material in cold weather concreting. According to the results, the temperature of concrete lowers below zero in 24hours, so early frost damage occurs in the case of exposure and 1 fold bubble sheet, but the lowest temperature keeps above zero, so a adiabatic effect is very favorable in the case of double bubble sheet and 부직포. Compressive strength of core specimen at 7 and 28 days is highest In the case of double bubble sheet and 부직포. But, considering convenience of construction and economical efficiency, it is thought that the most effective surface insulating material is 1 fold bubble sheet +blanket.

  • PDF

Temperature History of Mock-up Mass Concrete Considering Different Heat Generation Due to Mixture Adjustment (수화발열량이 다른 콘크리트조합 모의부재 매스콘크리트의 온도이력 특성)

  • Kim Jong;Jeon Chung-Keun;Shin Dong-An;Yoon Gi-Won;Oh Seon-Kyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.9-12
    • /
    • 2005
  • This paper investigated the temperature history of mass concrete mock up structure considering different heat generation by varying with mixture proportion. Setting time difference between high early strength mixture (E-P) and retarding mixture (R-F30) was 14.5hours. Incorporation of $30\%$ of fly ash contributed to $10^{\circ}C$ of hydration heat reduction. In generally used C and D combination, bottom concrete shows earlier hydration, while E-J combination showed reverse tendency and thus, this method can reduce the crack occurrence. Therefore, heat generation difference method has beneficial effect on reducing crack induced by hydration heat resulting from heat generation difference between surface and center section.

  • PDF

The Evaluation of Adiabatic Temperature rise in Concrete by Using Blended Cement Hydration Model (혼합시멘트 수화모델을 이용한 콘크리트의 단열온도상승 예측에 관한 연구)

  • Wang, Xiaoyong;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.31-32
    • /
    • 2011
  • Granulated slag from metal industries and fly ash from the combustion of coal are industrial by-products that have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, the hydration of concrete containing fly ash or slag is much more complex compared with that of Portland cement. In this paper, the production of calcium hydroxide in cement hydration and its consumption in the reaction of mineral admixtures is considered in order to develop a numerical model that simulates the hydration of concrete containing fly ash or slag. The heat evolution rates of fly ash- or slag-blended concrete is determined by the contribution of both cement hydration and the reaction of the mineral admixtures. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

  • PDF

The Evaluation of Temperature History in Concrete by Using Cement Hydration Model (수화모델을 이용한 콘크리트의 초기온도 예측에 관한 연구)

  • Wang, Xiaoyong;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.253-254
    • /
    • 2012
  • In this study, it carried out measurement experiment Ca(OH)2 and chemically bound water to verify Ca(OH)2 and chemically bound water prediction model out of hydration model of cement incorporating blast furnace slag. It compared and analyzed prediction results using prediction model with measurement results of Ca(OH)2 quantity using thermogravimetric differential temperature analysis and chemically bound water quantity using electronic furnace. It agrees well experiments results with prediction results.

  • PDF

EUNHA: A NEW COSMOLOGICAL HYDRODYNAMIC SIMULATION CODE

  • Shin, Jihye;Kim, Juhan;Kim, Sungsoo S.;Park, Changbom
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.3
    • /
    • pp.87-98
    • /
    • 2014
  • We develop a parallel cosmological hydrodynamic simulation code designed for the study of formation and evolution of cosmological structures. The gravitational force is calculated using the TreePM method and the hydrodynamics is implemented based on the smoothed particle hydrodynamics. The initial displacement and velocity of simulation particles are calculated according to second-order Lagrangian perturbation theory using the power spectra of dark matter and baryonic matter. The initial background temperature is given by Recfast and the temperature uctuations at the initial particle position are assigned according to the adiabatic model. We use a time-limiter scheme over the individual time steps to capture shock-fronts and to ease the time-step tension between the shock and preshock particles. We also include the astrophysical gas processes of radiative heating/cooling, star formation, metal enrichment, and supernova feedback. We test the code in several standard cases such as one-dimensional Riemann problems, Kelvin-Helmholtz, and Sedov blast wave instability. Star formation on the galactic disk is investigated to check whether the Schmidt-Kennicutt relation is properly recovered. We also study global star formation history at different simulation resolutions and compare them with observations.

Mock-up Test of Concrete using Combined Coarse particle Cement and Fly-Ash (굵은 입자 시멘트 및 플라이애시를 복합 사용한 콘크리트의 Mock-up Test)

  • Lee, Chung-Sub;Lee, Jae-Youn;Jang, Duk-Bae;Kim, Young-Pil;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.87-91
    • /
    • 2009
  • This study investigates possibility for practical use through small sized test with OPC and substituted fly ash 10% and return coarse cement (RCC), classed 1100${\sim}$1200 cm2/g, which is made by Cyclone Separator at cement producing process 20% (CF) for OPC. The experimental factors are 48% of W/B and OPC and 2 kinds of concrete proportions. The target slump and air content are $150{\pm}25$ mm and $4.5{\pm}1.5$ %. For the results, the flowalility and air content of CF are less than OPC because it needs more superplasticiser and air-entraining agent. The temperature history of CF is lower than OPC about $6{\sim}10^{\circ}C$. For the strength properties, CF is less than OPC, but their gap is declined at 28 days. The strength of the specimens are ordered by standard curing, field cured specimens, and core specimens.

  • PDF

Field Application on Mass Concrete of Combined Coarse Particle Cement and Fly-Ash in Mat Foundation (조분(粗粉) 시멘트와 플라이애시를 복합 치환한 매트 기초 매스콘크리트의 현장적용)

  • Han, Cheon-Goo;Jang, Duk-Bae;Lee, Chung-Sub
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.11-20
    • /
    • 2010
  • This study carried out a Mock-up test to apply Low-heat Cement (CF) that is adjusted to a fineness of $3,000\;{\pm}\;200\;cm^2/g$ by substituting Coarse particle Cement (CC) and fly ash with ordinary Portland Cement (OPC), then applied it on-site. The result of the test is as follows. The Mock-up test showed that the amount of admixture in CF increased SP agent and AE agent slightly more compared to OPC, while temperature history showed that the highest temperature of CF was around $6{\sim}10^{\circ}C$ lower than that of OPC. Compressive strength in CF was low compared to that of OPC, but the strength width became narrow at the age of 28 days, which is not considered to be significant. In on-site application, slump, air content and chloride content all satisfied the target values, while the temperature history showed that the highest temperature in the center by each cast was about $34^{\circ}C$ in the first cast, $42^{\circ}C$ in the second cast, and $39^{\circ}C$ in the third cast. Compressive strength of specimen for strut management showed low value compared to standard curing, but its strength was reduced at the age of 28 days.

Evaluation of Hydration Heat Properties of Mass Concrete and Crack Resistance Performance in Practical Large Underground Structures Using Ternary Blended Cement (3성분계 시멘트를 활용한 실 대형 지하구조물의 매스 콘크리트 수화 발열 특성 및 균열 저항성 평가)

  • Choi, Yun-Wang;Oh, Sung-Rok;Lee, Jae-Nam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.82-91
    • /
    • 2019
  • In this study, in order to evaluate Hydration Heat Characteristics of mass concrete using ternary blended cement for large underground structures, the analysis considering the temperature history and the thermal characteristics inside the actual structure was performed. The results of the analysis are compared with the measured values to verify the reliability of the analysis and to evaluate the crack resistance performance. As a result of the measured the actual structure temperature, The adiabatic temperature rise coefficients K and ${\alpha}$ of the slab were $35.1^{\circ}C$ and 0.72, respectively, and the wall was analyzed as $29.3^{\circ}C$ and 0.67. The analytical results and the correlation coefficients(r) were 0.95 and 0.98, respectively. As a result of evaluating the crack resistance of slab and wall, the minimum crack index of slab and wall was 1.22 and 1.20, respectively. These results were found to satisfy the site management standards.