DOI QR코드

DOI QR Code

Evaluation of Hydration Heat Properties of Mass Concrete and Crack Resistance Performance in Practical Large Underground Structures Using Ternary Blended Cement

3성분계 시멘트를 활용한 실 대형 지하구조물의 매스 콘크리트 수화 발열 특성 및 균열 저항성 평가

  • Choi, Yun-Wang (Department of Civil Engineering, Semyung University) ;
  • Oh, Sung-Rok (Department of Civil Engineering, Semyung University) ;
  • Lee, Jae-Nam (Department of Civil Engineering, Semyung University)
  • Received : 2019.02.26
  • Accepted : 2019.03.13
  • Published : 2019.03.30

Abstract

In this study, in order to evaluate Hydration Heat Characteristics of mass concrete using ternary blended cement for large underground structures, the analysis considering the temperature history and the thermal characteristics inside the actual structure was performed. The results of the analysis are compared with the measured values to verify the reliability of the analysis and to evaluate the crack resistance performance. As a result of the measured the actual structure temperature, The adiabatic temperature rise coefficients K and ${\alpha}$ of the slab were $35.1^{\circ}C$ and 0.72, respectively, and the wall was analyzed as $29.3^{\circ}C$ and 0.67. The analytical results and the correlation coefficients(r) were 0.95 and 0.98, respectively. As a result of evaluating the crack resistance of slab and wall, the minimum crack index of slab and wall was 1.22 and 1.20, respectively. These results were found to satisfy the site management standards.

본 연구에서는 실 대형 지하구조물의 매스 콘크리트의 수화 발열 특성 및 균열 저항성을 평가하기 위하여 실 구조물 내부의 온도이력 및 열 특성을 고려한 해석을 실시하였다. 해석 결과는 실측값과 비교를 통하여 해석의 신뢰성을 검증하였으며, 균열에 대한 저항성을 평가하였다. 실 구조물의 온도 측정 결과, 슬래브의 단열 온도 상승 계수 K 및 ${\alpha}$$35.1^{\circ}C$와 0.72이었으며, 벽체는 $29.3^{\circ}C$와 0.67로 분석되었다. 분석된 단열온도상승계수 및 현장조건을 적용한 수화열 해석 결과 실측값과 상관계수(r)는 각각 0.95 및 0.98로 나타났다. 슬래브 및 벽체의 균열 저항성을 평가한 결과 슬래브 및 벽체의 최소 균열지수는 각각 1.22 및 1.20으로 나타나 현장 관리기준을 만족하는 것으로 나타났다.

Keywords

GSJHDK_2019_v7n1_82_f0001.png 이미지

Fig. 1. Slab location and field foreground

GSJHDK_2019_v7n1_82_f0002.png 이미지

Fig. 2. Slab drawing and casting section

GSJHDK_2019_v7n1_82_f0003.png 이미지

Fig. 3. Wall location and field foreground

GSJHDK_2019_v7n1_82_f0004.png 이미지

Fig. 4. Wall drawing and casting section

GSJHDK_2019_v7n1_82_f0005.png 이미지

Fig. 5. Micro-hydration and cumulative micro-hydration heat of mixed binder

GSJHDK_2019_v7n1_82_f0006.png 이미지

Fig. 6. Losition of slab and temperature measurement area

GSJHDK_2019_v7n1_82_f0007.png 이미지

Fig. 7. Losition of wall and temperature measurement area

GSJHDK_2019_v7n1_82_f0008.png 이미지

Fig. 8. Temperature gauge installation foreground

GSJHDK_2019_v7n1_82_f0009.png 이미지

Fig. 9. Slab modeling

GSJHDK_2019_v7n1_82_f0010.png 이미지

Fig. 10. wall modeling

GSJHDK_2019_v7n1_82_f0011.png 이미지

Fig. 11. Temperature history of slab

GSJHDK_2019_v7n1_82_f0012.png 이미지

Fig. 12. Temperature history of wall

GSJHDK_2019_v7n1_82_f0013.png 이미지

Fig. 13. Temperature distribution of construction phase of slab

GSJHDK_2019_v7n1_82_f0014.png 이미지

Fig. 14. Analysis result and actual measurement result

GSJHDK_2019_v7n1_82_f0015.png 이미지

Fig. 15. Analysis point of the slab

GSJHDK_2019_v7n1_82_f0016.png 이미지

Fig. 16. Result of hydration heat analysis of slab

GSJHDK_2019_v7n1_82_f0017.png 이미지

Fig. 17. Crack stability of slab

GSJHDK_2019_v7n1_82_f0018.png 이미지

Fig. 18. Temperature distribution of construction phase of wall

GSJHDK_2019_v7n1_82_f0019.png 이미지

Fig. 19. Analysis result and actual measurement result

GSJHDK_2019_v7n1_82_f0020.png 이미지

Fig. 20. Analysis point of the wall

GSJHDK_2019_v7n1_82_f0021.png 이미지

Fig. 21. Result of hydration heat analysis of wall

GSJHDK_2019_v7n1_82_f0022.png 이미지

Fig. 22. Crack stability of wall

Table 1. mass concrete mix according to applied member

GSJHDK_2019_v7n1_82_t0001.png 이미지

Table 2. Chemical composition of mixed binder

GSJHDK_2019_v7n1_82_t0002.png 이미지

Table 3. Cumulative micro-hydration heat of mixed binder

GSJHDK_2019_v7n1_82_t0003.png 이미지

Table 4. Physical properties of aggregate

GSJHDK_2019_v7n1_82_t0004.png 이미지

Table 5. Physical properties of chemical admixtures

GSJHDK_2019_v7n1_82_t0005.png 이미지

Table 6. Hydration heat analysis condition

GSJHDK_2019_v7n1_82_t0006.png 이미지

Table 7. Thermal and mechanical properties

GSJHDK_2019_v7n1_82_t0007.png 이미지

Table 8. Evaluation result of basic quality

GSJHDK_2019_v7n1_82_t0008.png 이미지

Table 9. Measurement result of hydration heat

GSJHDK_2019_v7n1_82_t0009.png 이미지

Table 10. Results of temperature history analysis of slab

GSJHDK_2019_v7n1_82_t0010.png 이미지

Table 11. Crack index of slab

GSJHDK_2019_v7n1_82_t0011.png 이미지

Table 12. Results of temperature history analysis of wall

GSJHDK_2019_v7n1_82_t0012.png 이미지

Table 13. Crack index of wall

GSJHDK_2019_v7n1_82_t0013.png 이미지

References

  1. Hwang, C.L., Shen, D.H. (1991). The effects of blast-furnace slag and fly ash on the hydration of portland cement, Cement and Concrete Research, 21, 1137-1147. https://doi.org/10.1016/0008-8846(91)90074-R
  2. EBN News. (2017). http://www.ebn.co.kr/
  3. Lee, J.N. (2017). A Study on the Development of Ternary Blended Mass Concrete for Crack Control of Large Underground Structures, Ph.D Thesis, Semyung University, Korea [in Korean].
  4. Espenson, J.H. (1996). Chemical Kinetics and Reaction Mechanisms, Second Edition, Mc Graw -Hill, Inc., 1-52.
  5. Taplin, J.H. (1959). A method for fllowing the hydration reaction in portland cement paste, Australian Journal of Applied Science, 10, 329-345.
  6. Ministry of Land, Infrastructure and Transport. (2016). http://www.molit.go.kr/
  7. Mehta, P.K., Monteiro, J.M. (2004). Concrete : Structure, Properties, and Materials, Third Edition, Prentice-Hall, Inc., 209-260.
  8. Mehta, P.K., Monteiro, J.M. (1993). Concrete : Structure, Properties, and Materials, Second Edition, Prentice-Hall, Inc., 481-493.
  9. Dhir, R.K. (1986). Pulerized-Fuel Ash, Cement Replacement Materials, Surrey University Press, 197-255.
  10. Nan, S., Hsu, K.C., Chai, H.W. (2001). A simple mix design method for self-compacting concrete, Cement and Concrete Research, 31, 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X
  11. Statistics Korea, (2017). http://kostat.go.kr/
  12. Cook, W.D., Miao, B., Aitcin, P.C., Mitchell, D. (1992). Thermal stress in large high-strength concrete columns, ACI Materials Journal, 89(1), 61-68.
  13. Zhang, Y.S., Sun, W., Liu, S. (2002). Study on the hydration heat of binder paste in high-performance concrete, Cement and Concrete Research, 32(9), 1483-1488. https://doi.org/10.1016/S0008-8846(02)00810-4
  14. Choi, Y.W., Kim, Y.J., Shin, H.C., Moon, H.Y. (2006). An experimental research on the fluidity and mechanical properties of highstrength lightweight self-compacting concrete, Cement and Concrete Research, 36(9), 1595-1602. https://doi.org/10.1016/j.cemconres.2004.11.003