Browse > Article
http://dx.doi.org/10.5303/JKAS.2014.47.3.87

EUNHA: A NEW COSMOLOGICAL HYDRODYNAMIC SIMULATION CODE  

Shin, Jihye (School of Space Research, Kyung Hee University)
Kim, Juhan (Center for Advanced Computation, Korea Institute for Advanced Study)
Kim, Sungsoo S. (School of Space Research, Kyung Hee University)
Park, Changbom (School of Physics, Korea Institute for Advanced Study)
Publication Information
Journal of The Korean Astronomical Society / v.47, no.3, 2014 , pp. 87-98 More about this Journal
Abstract
We develop a parallel cosmological hydrodynamic simulation code designed for the study of formation and evolution of cosmological structures. The gravitational force is calculated using the TreePM method and the hydrodynamics is implemented based on the smoothed particle hydrodynamics. The initial displacement and velocity of simulation particles are calculated according to second-order Lagrangian perturbation theory using the power spectra of dark matter and baryonic matter. The initial background temperature is given by Recfast and the temperature uctuations at the initial particle position are assigned according to the adiabatic model. We use a time-limiter scheme over the individual time steps to capture shock-fronts and to ease the time-step tension between the shock and preshock particles. We also include the astrophysical gas processes of radiative heating/cooling, star formation, metal enrichment, and supernova feedback. We test the code in several standard cases such as one-dimensional Riemann problems, Kelvin-Helmholtz, and Sedov blast wave instability. Star formation on the galactic disk is investigated to check whether the Schmidt-Kennicutt relation is properly recovered. We also study global star formation history at different simulation resolutions and compare them with observations.
Keywords
cosmology: large-scale structure of universe; galaxies: evolution; methods: numerical;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Teyssier, R. 2002, Cosmological Hydrodynamics with Adaptive Mesh Refinement. A New High Resolution Code Called RAMSES, A&A, 385, 337   DOI   ScienceOn
2 Thacker, R. J., Tittley, E. R., Pearce, F. R., Couchman, H. M. P., & Thomas, P. A. 2000, Smoothed Particle Hydrodynamics in Cosmology: a Comparative Study of Im-plementations, MNRAS, 319, 619   DOI
3 Wadsley, J. W., Veeravalli, G., & Couchman, H. M. P. 2008, On the Treatment of Entropy Mixing in Numerical Cos-mology, MNRAS, 387, 427   DOI   ScienceOn
4 Wadsley, J. W., Stadel, J., & Quinn, T. 2004, Gasoline: a Flexible, Parallel Implementation of TreeSPH, New Astronomy, 9, 137   DOI   ScienceOn
5 Wetzstein, M., Nelson, A. F., Naab, T., & Burkert, A. 2009, Vine-A Numerical Code for Simulating Astrophysical Systems Using Particles. I. Description of the Physics and the Numerical Methods, ApJS, 184, 298   DOI
6 Read, J. I., Hayfield, T., & Agertz, O. 2010, Resolving Mixing in Smoothed Particle Hydrodynamics, MNRAS, 405, 1513
7 Rosswog, S.,& Price, D. 2007, MAGMA: a Three-Dimensional, Lagrangian Magnetohydrodynamics Code for Merger Applications, MNRAS, 379, 915   DOI   ScienceOn
8 Saitoh, T. R., & Makino, J. 2009, A Necessary Condition for Individual Time Steps in SPH Simulations, ApJ, 697,99   DOI
9 Sawala, T., Scannapieco, C., Maio, U., & White, S. 2010, Formation of Isolated Dwarf Galaxies with Feedback, MNRAS, 402,1599   DOI   ScienceOn
10 Seager, S., Sasselov, D. D., & Scott, D. 1999, A New Calculation of the Recombination Epoch, ApJ, 523, L1   DOI
11 Sedov, L. I. 1959, Similarity and Dimensional Methods in Mechanics (New York: Academic Press)
12 Sod, G. A. 1978, A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws, JocoPh, 27, 1
13 Springel, V., & Hernquist, L. 2002, Cosmological Smoothed Particle Hydrodynamics Simulations: the Entropy Equation, MNRAS, 333, 649   DOI   ScienceOn
14 Springel, V. 2005, The Cosmological Simulation Code GADGET-2, MNRAS, 364, 1105   DOI   ScienceOn
15 Springel, V. 2010, Smoothed Particle Hydrodynamics in Astrophysics, ARA&A, 48, 391   DOI   ScienceOn
16 Tajiri, Y., Umemura, M. 1998, A Criterion for Photoionization of Pregalactic Clouds Exposed to Diffuse Ultraviolet Background Radiation, ApJ, 502, 59   DOI
17 Tegmark, M., et al. 2006, Cosmological Constraints from the SDSS Luminous Red Galaxies, Phy. Rev. D, 74, 123507   DOI   ScienceOn
18 Okamoto, T., Nemmen, R. S., & Bower, R. G. 2008. The Impact of Radio Feedback from Active Galactic Nuclei in Cosmological Simulations: Formation of Disc Galaxies, MNRAS, 385, 161   DOI   ScienceOn
19 Park, C., Choi, Y.-Y., Kim, J., Gott, J. R., Kim, S. S., & Kim, K.-S. 2012, The Challenge of the Largest Structures in the Universe to Cosmology, ApJ, 759, 7   DOI
20 O'Shea, B. W., Bryan, G., Bordner, J., Norman, M. L., Abel, T., Harkness, R., & Kritsuk, A., 2004, Introducing Enzo, an AMR Cosmology Application, arXiv:astro-ph/0403044
21 Park, C., & Hwang, H. S. 2009, Interactions of Galaxies in the Galaxy Cluster Environment, ApJ, 699, 1595   DOI
22 Price, D. J. 2008, Modelling Discontinuities and Kelvin Helmholtz Instabilities in SPH, JCoPh, 227, 10040
23 Rasera, Y., Corasaniti, P.-S., Alimi, J.-M., Bouillot, V., Reverdy, V., & Balmes, I. 2013, Cosmic Variance Lim-ited Baryon Acoustic Oscillaions from the DEUS-FUR ACDM Simulation, arXiv:1311.5662
24 Kuhlen, M., Vogelsberger, M., & Angulo, R. 2012, Numerical Simulations of the Dark Universe: State of the Art and the Next Decade, Physics of the Dark Unverse, 1, 50   DOI   ScienceOn
25 Masaki, S., Hikage, C., Takada, M., Spergel, D. N., & Sugiyama, N. 2013, Understanding the Nature of Luminous Red Galaxies (LRGs): Connecting LRGs to Central and Satellite Subhalos, MNRAS, 436, 2286   DOI
26 McNally, C. P., Lyra, W., & Passy, J.-C. 2012, AWell-Posed Kelvin-Helmholtz Instibility Test and Comparison, ApJS, 201, 18   DOI
27 Monaghan, J. J. 1992, Smoothed Particle Hydrodynamics, ARA&A, 30, 54
28 Monaghan, J. J. 1997, SPH and Riemann Solvers, Comput. Phys., 136, 298   DOI   ScienceOn
29 Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, The Structure of Cold Dark Matter Halos, ApJ, 463, 563
30 Kim, J., Park, C., Rossi, G., Lee, S. M., & Gott, J. R. III. 2011, The New Horizon Run Cosmological N-Body Simulations, JKAS, 44, 217   과학기술학회마을   DOI   ScienceOn
31 Kravtsov, A. V. 1999, High-Resolution Simulations of Structure Formation in the Universe, PhD thesis, New Mexico State Univ.
32 Kroupa, P. 2001, On the Variation of the Initial Mass Function, MNRAS, 322, 231   DOI   ScienceOn
33 Hopkins, P. F. 2013, A General Class of Lagrangian Smoothed Particle Hydrodynamic Methods and Implications for Fluid Mixing Problems, MNRAS, 428, 2840   DOI
34 Hernquist, L. 1993, N-Body Realizations of Compound Galaxies, ApJSS, 86, 38
35 Hopkins, A. M., & Beacom, J. F. 2006, On the Normalization of the Cosmic Star Formation History, ApJ, 651, 142   DOI
36 Hubber, D. A., Batty, C. P., McLeod, A., & Whitworth, A. P. 2011, SEREN-A New SPH Code for Star and Planet Formation Simulations, A&A, 529, 27   DOI   ScienceOn
37 Hubber, D. A., Falle, S. A. E. G., & Goodwin, S. P. 2013, Convergence of AMR and SPH Simulaitons-I. Hydro-dynamical Resolution and Convergence Tests, MNRAS, 432, 711   DOI
38 Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, Comprehensive Analytic Formulae for Stellar Evolution as a Function of Mass and Metallicity, MNRAS, 315, 543   DOI   ScienceOn
39 Jenkins, A. 2010, Second-Order Lagrangian Perturbation Theory Initial Conditions for Resimulations, MNRAS, 403, 1859   DOI   ScienceOn
40 Katz, N. 1992, Dissipational Galaxy Formation. II-Effects of Star Formation, ApJ, 391, 502   DOI
41 Choi, Y.-Y., Kim, J., Rossi, G., Kim, S. S., & Lee, J.-E. 2013, Topology of Luminous Red Galaxies from the Sloan Digital Sky Survey, ApJS, 209, 19   DOI
42 Kennicutt, R. C., Jr. 1998, The Global Schmidt Law in Star-Forming Galaxies, ApJ, 498, 541   DOI   ScienceOn
43 Kim, J., Park, C., Gott, J. R. III., & Dubinski, J. 2009, The Horizon Run N-Body Simulation: Baryon Acoustic Oscillations and Topology of Large-scale Structure of the Universe, ApJ, 701, 1547   DOI
44 Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q., MacNeice, P., Rosner, R., Truran, J. W., & Tufo, H. 2000, ApJSS, 131, 273   DOI   ScienceOn
45 Haardt, F., & Madau, P. 1996, Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background, ApJ, 461, 20   DOI
46 Angulo, R. E., Springel, V., White, S. D. M., Jenkins, A., Baugh, C. M., & Frenk, C. S. 2012, Scaling Relations for Galaxy Clusters in the Millennium-XXL Simulation
47 Cha, S., Inutsuka, S., & Nayakshin, S. 2010, Kelvin-Helmholtz Instabilities with Godunov Smoothed Particle Hydrodynamics, MNRAS, 403, 1165   DOI   ScienceOn
48 Choi, J.-H., & Nagamine, K. 2012, On the Inconsistency be-tween the Estimates of Cosmic Star Formation Rate and Stellar Mass Density of High-Redshift Galaxies, MNRAS, 419, 1280   DOI   ScienceOn
49 Choi, Y.-Y., Park, C., Kim, J., Gott, J. R., Weinberg, D. H., Vogeley, M. S., & Kim, S. S. 2010, Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models, ApJS, 190, 181   DOI
50 Colless, M., Dalton, G., Maddox, S., Sutherland, W., Norberg, P., Cole, S., Bland-Hawthorn, J., Bridges, T., Can-non, R., Collins, C., et al. 2001, The 2dF Galaxy Redshift Survey: Spectra and Redshifts, MNRAS, 328, 1039   DOI   ScienceOn
51 Dubinski, J., Kim, J., Park, C., & Humble, R. 2004, GOTPM: a Parallel Hybrid Particle-Mesh Treecode, New Astronomy, 9, 111   DOI   ScienceOn
52 Hess, S. & Springel, V. 2010, Particle Hydrodynamics with Tessellation Techniques, MNRAS, 406, 2289   DOI   ScienceOn
53 Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003, Simulations of Galaxy Formation in a Cold Dark Matter Universe. I. Dynamical and Photometric Properties of a Simulated Disk Galaxy, ApJ, 591, 499   DOI
54 Agertz, O., Moore, B., Stadel, J., Potter, D., Miniati, F., Read, J., Mayer, L., Gawryszczak, A., Kravtsov, A., Nordlund, A,Pearce, F., Quilis, V., Rudd, D., Springel, V., Stone, J., Tasker, E., Teyssier, R., Wadsley, J., & Walder, R. 2007, Fundamental Differences between SPH and Grid Methods, MNRAS, 380, 963   DOI   ScienceOn
55 Valcke, S., de Rijcke, S., Rodiger, E., & Dejonghe, H. 2010, Kelvin-Helmholtz Instabilities in Smoothed Particle Hydrodynamics, MNRAS, 408, 71   DOI   ScienceOn
56 Nurmi, P., Heinamaki, P., Sepp, T., Tago, E., Saar, E., Gramann, M., Einasto, M., Tempel, E., & Einasto, J. 2013, Groups in the Millennium Simulation and in SDSS DR7, MNRAS, 436, 380   DOI
57 Woosley, S. E., & Weaver, T. A. 1995, The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis, ApJ, 101, 181   DOI
58 Merlin, E., Buonomon, U., Grassi, T., Piovan, L., & Chiosi, C. 2010, EvoL: the New Padove Tree-SPH Parallel Code for Cosmological Simulations, A&A, 513, 36   DOI   ScienceOn
59 Aihara, H., Allende P. C., An, D., Anderson, S. F., Aubourg, E., Balbinot, E., Beers, T. C., Berlind, A. A., Bickerton, S. J., Bizyaev, D., et al. 2011, The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III, ApJSS, 193, 29   DOI
60 Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., & Verner, E. M. 1998, CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra, PASP, 110, 761