• Title/Summary/Keyword: Adhesion strength

Search Result 1,334, Processing Time 0.026 seconds

Effect of Surface Modification of Polyester Cord on the Adhesion of SBR/Polyester (폴리에스터 코드의 표면개질 조건이 SBR/폴리에스터의 접착에 미치는 영향)

  • Park, Y.S.;Chung, K.H.
    • Elastomers and Composites
    • /
    • v.42 no.2
    • /
    • pp.75-85
    • /
    • 2007
  • In this study, the new adhesion system was studied to improve the adhesion strength between polyester cord and rubber matrix. In order to enhance the adhesion strength through polyester cord's surface treatment, the NaOH solution was used. The NaOH solution concentrations of 0.03, 0.05, 0.1, 0.2, 0.5, 1 and 5 wt.% were used in surface modifying the polyester cord. The optimum condition showing the maximum adhesion strength of polyester cord with SBR compound containing bonding agent was at NaOH concentration of 0.05 wt.% with treatment time of 10 minutes. When the NaOH solution concentration was above 1 wt.%, the polyester cord due to the excess surface modification was damaged, and resulted in breakage during the adhesion test. Also, the adhesion strength between polyester and SBR could be improved by coating the polyester cord with triallylcyanurate(TC) adhesive. The drying condition of polyester cord coated with TC attributed to the adhesion strength. The maximum adhesion strength was obtained by using the polyester cord dried at $220^{\circ}C$ rather than dried at room temperature.

Four Point Bending Test for Adhesion Testing of Packaging Strictures: A Review

  • Mahan, Kenny;Han, Bongtae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.33-39
    • /
    • 2014
  • To establish the reliability of a packaging structures, adhesion testing of key interfaces is a critical task. Due to the material mismatch, the interface may be prone to delamination failure due to conditions during the manufacturing of the product or just from the day-to-day use. To assess the reliability of the interface adhesion strength testing can be performed during the design phase of the product. One test method of interest is the four-point bending (4PB) adhesion strength test method. This test method has been implemented in a variety of situations to evaluate the adhesion strength of interfaces in bimaterial structures to the interfaces within thin film multilayer stacks. This article presents a review of the 4PB adhesion strength testing method and key implementations of the technique in regards to semiconductor packaging.

Adhesion Mechanism of Polyurethane Adhesive for Laminated Steel Plate (라미네이트 강판용 폴리우레탄 접착제의 접착거동)

  • Youm, Joo-Sun;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.119-123
    • /
    • 2012
  • Adhesion strength of polyurethane adhesive for laminated metal plate was investigated. Also, the effect of laminating conditions on the adhesion strength was understood by measuring peel strength as a function of adhesion temperature and time. The amount of isocyanate appearing due to the unblocking of oxime in polyurethane adhesive affected the strength of adhesion with hydroxyl on the metal plate or aluminum foil and it was controlled by adhesion temperature and time. However, the excess of temperature and time in laminating process caused the lowering of adhesion strength because of the decrease of solvent content as well as thermal degradation of the adhesive.

Evaluating the Tensile Adhesion Strength of Methyl Methacrylate (MMA) Based Road Repair Materials (Methyl Methacrylate(MMA)계 도로보수재의 인장 접착 강도 평가)

  • Ji, Sung-jun;Kim, Gyu-yong;Pyeon, Su-jeong;Choi, Byung-cheol;Park, Jun-young;Nam, Jeong-soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.107-108
    • /
    • 2023
  • In this study, the tensile adhesion strength was evaluated according to KS F 4932 to assess the suitability of MMA-based repair materials for concrete roads. Two types of MMA were used. Mortar mock-ups were made and tested for adhesion strength in three different surface conditions: air, water, and salt water. Both showed strengths above the standardized strength of 0.6 MPa. Type B, which has a relatively low adhesion strength, is considered more suitable.

  • PDF

Effects of Maleinized Polybutadiene on the Elongation and Impact Peel Strength of Epoxy Resins

  • Albin Davies;Archana Nedumchirayil Manoharan;Youngson Choe
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.162-168
    • /
    • 2024
  • The effect of maleinized polybutadiene (MPB) on the mechanical properties of epoxy resins including adhesion strength, elongation and impact peel resistance was investigated in this study, in which MPB is an anhydride-functionalized polybutadiene prepolymer. Different molecular weights (3.1K and 5.6K) of MPB were added to diglycidyl ether bisphenol-A (DEGBA), an epoxy resin, to increase its impact peel strength and elongation. At various loading percent (5, 10, 15, 20 and 25 wt%) of MPB in the epoxy resin, significant improvements of mechanical properties were observed. According to the comparative analysis results, the modified epoxy system with 15 wt% (3.1K) MPB exhibited the highest lap shear strength, about 40% higher than that of neat epoxy. The tensile strength and elongation steadily and simultaneously increased as the loading percent of MPB increased. The impact peel strengths at low (-40℃) and room (23℃) temperatures were substantially improved by MPB incorporation into epoxy resins. Reactive and flexible MPB prepolymer seems to construct strong nano-structured networks with rigid epoxy backbones without sacrificing the tensile and adhesion strengths while increasing impact resistance/toughness and elongation properties. For higher impact peel while maintaining adhesion and tensile strengths, approximately 10-15 wt% MPB loading in epoxy resin was suggested. Consequently, incorporation of functionalized MPB prepolymer into epoxy system is an easy and efficient way for improving some crucial mechanical properties of epoxy resins.

Adhesion Properties of Epoxy Resin Adhesive Reinforced Tile (에폭시 수지 접착제를 보강한 타일의 부착성능 평가)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Lee, Sang-yun;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.128-129
    • /
    • 2020
  • In this study, flexural strength and tile adhesion strength were evaluated by using a mortar, dry mortar and an epoxy resin reinforced mortar to examine the adhesion performance by reinforcing the epoxy resin adhesive. As a result, it was clearly confirmed that the effect of improving the adhesion strength by reinforcing the epoxy resin adhesive regardless of the type of tile, and in particular, when applying the epoxy resin adhesive to the porcelain and polishing tiles, it is judged that sufficient adhesion performance can be secured.

  • PDF

A Study on the Adhesive Performance of High-early Strengthening Polymer Cement Composites for Crack Repair of RC Structures (RC 구조물의 균열보수용 조강성 폴리머 시멘트 복합체의 접착성능에 관한 연구)

  • Park, Dong-Yeop;Kim, Sang-Hyeon;Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.179-180
    • /
    • 2023
  • The adhesion performance of PCCs for crack repair of RC structures was greater in the case of using ultra high-early strength cement than in the case of using ordinary Portland cement, and the effect of mixing silica fume was higher in the case of ordinary Portland cement than that of ultra high-early strength cement. On the other hand, 130% of W/C was more fluid than 80% of W/C in the same P/C 80%, which increased the fillability and improved the strength, but the strength improvement effect was the greatest in adhesion in flexure. Through this study, the basic characteristics of the adhesion performance of PCCs were identified, and based on this, it is necessary to induce an optimal mixing design that can increase adhesion performance through various mixing designs.

  • PDF

The effect of deposition conditions on the adhesion strength of TiN multilayer by D. C. magnetron sputtering (D. C. 마그네트론 스퍼터링에 의한 증착조건이 TiN다층박막의 밀착력에 미치는 영향)

  • 김선규;유정광;이건환;권식철
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.4
    • /
    • pp.261-267
    • /
    • 1996
  • The characteristics and adhesion strength of TiN layer deposited by D. C. magnetron sputtering were investigated. Three types of TiN layers were deposited on STS304 stainless steel. Scratch tests were performed to determine the effect of deposition temperature, the thickness of coated TiN layer and the titanium inter-layer on the adhesion strength. TiN multilayer with titanium inter-layer showed the highest critical load in the deposition temperature range of $25^{\circ}C$ to $300^{\circ}C$. Adhesion strength of TiN multilayer with titanium inter-layer was raised from 15N to 20N by raising deposition temperature from $25^{\circ}C$ to $400^{\circ}C$. Adhesion strength was raised from 18N to 38N by increasing the thickness of outer layer of TiN multilayer from 2.1 $\mu\textrm{m}$ to 9.5 $\mu\textrm{m}$.

  • PDF

Effects of plasma Immersion ion Implanted and deposited layer on Adhesion Strength of DLC film

  • Yi Jin-Woo;Kim Jong-KuK;Kim Seock-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.301-305
    • /
    • 2004
  • Effects of ion implantation on the adhesion strength of DLC film as a function of ion doses and implanted energies were investigated. Ti ions were implanted on the Si-wafer substrates followed by DLC coating using ion beam deposition method. Adhesion strength of DLC films were determined by scratch adhesion tester. Morphologies and compositional variations at the different ion energies and doses were observer by Laser Microscope and Auger Electron Spectroscopy, respectively. From results of scratch test, the adhesion strength of films was improved as increasing ion implanted energy, however there was no significant evidence with ion dose.

  • PDF

Effect of Complexing Agents on Adhesion Strength between Electroless Copper Film and Ta Diffusion Barrier (무전해 구리 도금액에서 착화제가 접합력에 미치는 영향에 대한 고찰)

  • Lee, Chang-Myeon;Jeon, Jun-Mi;Hur, Jin-Young;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.162-167
    • /
    • 2014
  • The primary purpose of this research is to investigate how much the complexing agent in electroless Cu electrolytes will affect adhesion strength between copper film and Ta diffusion barrier for Cu interconnect of semiconductor. The adhesion strength using rochelle's salt as complexing agent was higher than the case of using EDTA-4Na. Effect of complexing agent on adhesion strength and electrical resistivity was studied in crystal structural point of view.