• Title/Summary/Keyword: Adhesion Strength

Search Result 1,339, Processing Time 0.029 seconds

A Study on the Flexural Adhesion Performance of Repair Section of Polymer Cement Composites by Crack Depth (균열깊이에 따른 폴리머 시멘트 복합체 보수 단면의 휨접착성능에 관한 연구)

  • Kim, Sang-Hyeon;Park, Dong-Yeop;Lee, Chang-Min;Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.181-182
    • /
    • 2023
  • This study is a study on the flexural adhesion performance of polymer cement composites(PCCs) repair section according to the crack depth, and the flexural adhesion strength was obtained through a flexural strength test of cement mortar that was filled into cracks and repaired to a certain thickness using PCCs made of ultra high-early strength cement and polymer dispersion of EVA. As a result of the study, the flexural adhesion performance according to the crack width and crack depth was expected to decrease the flexural adhesion strength as the crack depth increased at the crack width 3.0mm, but the crack width 2.0mm and 1.5mm did not show any tendency according to the crack depth. In addition, even in the final destruction, the fact that the cracks and bottoms filled with PCCs were not cut or dropped proves that PCCs have excellent adhesion and rich toughness.

  • PDF

The Adhesion Strength and Interface Chemical Reaction of Cu/Ni/Polyimide System (Cu/Ni/Polyimide 시스템의 접착력 및 계면화학반응)

  • Choi, Chul-Min;Chae, Hong-Chul;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.664-668
    • /
    • 2007
  • The magnetron sputtering was used to deposit Ni buffer layers on the polyimide surfaces to increase the adhesion strength between Cu thin films and polyimide as well as to prevent Cu diffusion into the polyimide. The Ni layer thickness was varied from 100 to $400{\AA}$. The adhesion strength increased rather significantly up to $200{\AA}$ of Ni thickness, however, there was no significant increase in strength over $200{\AA}$. The XPS analysis revealed that Ni thin films could increase the adhesion strength by reacting with the polar C=O bonds on the polyimide surface and also it could prevent Cu diffusion into the polyimide. The Cu/Ni/ polyimide multilayer thin films showed a high stability even at the high heating temperature of $200^{\circ}C$, however, at the temperature of $300^{\circ}C$, Cu diffused through the Ni buffer layer into polyimide, resulting in the drastic decrease in adhesion strength.

Compression and Adhesion Characteristics of Rice Dough Added with Cellulose Ethers Using Rheometer (유변물성 측정기를 이용한 셀룰로오스 에테르가 첨가된 쌀 반죽의 압축 및 접착 특성)

  • Um, In Chul;Yoo, Young Jin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.1
    • /
    • pp.18-23
    • /
    • 2014
  • The present study examined the effect of cellulose ether on the compression and adhesion characteristics of rice dough using a rheometer. When increasing the amount of hydroxypropyl methylcellulose (HPMC), the adhesion strength consistently increased. However, the compression strength of the rice dough was the highest with 2% HPMC. When increasing the molecular weight and decreasing the water content, the compression and adhesion strength of the rice dough were both increased. Furthermore, the substitution type and degree of cellulose ether were also found to be key factors determining the compression and adhesion strength of the rice dough.

Synthesis and Properties of Eco-friendly Polyurethane Adhesive without Solvent : Effect of DPE-41, TDI, Initiator and Plasticizer Content (용제를 사용하지 않는 친환경 폴리우레탄 접착제의 합성 및 물성 : DPE-41, TDI, 개시제 및 가소제량의 영향)

  • Ryu, Ki-Jung;Park, Chan-Young
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1909-1918
    • /
    • 2014
  • In this experiment no solvent based polyurethane(PU) adhesives were prepared with the polyol, isocyanate, dioctyl phthalate(DOP), 2-hydroxyethylacrylate(2-HEA) and other acrylate monomers. The softenening point of the PU adhesives measured by Ring & Ball method were examined in the present study. And adhesion strength and mechanical properties such as tensile strength and 100% modulus of the PU adhesives were evaluated by Universal Test Machine. The experimental results showed that increase of both DPE-41, benzoylperoxide(BPO) and toluene diisocyanate(TDI) increased softenening point, adhesion strength, tensile strength and 100% modulus. However as DOP content increased sofenening point, adhesion strength decreased and tensile strength, 100% modulus also decreased.

PC/ASA blends having enhanced interfacial and mechanical properties

  • Kang, M.S.;Kim, C.K.;Lee, J.W.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Blend of bisphenol-A polycarbonate (PC) and (acrylonitrile-styrene-acrylic rubber) terpolymer (ASA) having excellent balance in the interfacial properties and mechanical strength was developed for the automobile applications. Since interfacial adhesion between PC and styrne-acrylonitrile copolymer (SAN) matrix of ASA is not strong enough, two different types of compatibilizers, i.e, diblock copolymer composed of tetramethyl polycarbonate (TMPC) and SAN (TMPC-b-SAN) and poly(methyl methacrylate) (PMMA) were examined to improve interfacial adhesion between PC and SAN. TMPC-b-SAN was more effective than PMMA in increasing interfacial adhesion between PC and SAN matrix of ASA (or weld-line strength of PC/ASA blend). When blend composition was fixed, PC/ASA blends exhibited similar mechanical properties except impact strength and weld-line strength. Impact strength of PCI ASA blend at low temperature was influenced by rubber particle size and its morphology. PC/ASA blends containing commercially available PMMA as compatibilizer also exhibited excellent balance in mechanical properties and interfacial adhesion.

Peel Adhesion Strength and Plastic Deformation of Cu-Cr Alloy Thin Films (Cu-Cr 합금박막의 필 접착력과 소성변형)

  • 이태곤;임준홍;김영호
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.219-224
    • /
    • 1995
  • The peel adhesion and plastic deformation in Cu-Cr alloy films, sputter-deposited onto polyimide films, have been studied as a function of Cr content in the film. The adhesion strength has been measured by T-peel test and the amount of plastic deformation in the peeled metal strip was determined qualitatively by XRD technique. Peel adhesion strength has a maximum in the film containing 22-33wt.% Cr and the peel strength of pure Cr film is lower than the maximum. The film having the highest peel strength is deformed most heavily. The effect of Cr content on the peel strength is discussed in terms of the interfacial bond strength and mechanical properties of Cu-Cr alloy film.

  • PDF

Effect of Additional Electrical Current on Adhesion Strength between Copper and Polyimide Films (인가 전류가 구리 도금 피막과 폴리이미드 필름의 접합력에 미치는 영향)

  • Lee, Jang-Hun;Han, Yoonsung;Lee, Ho-Nyun;Hur, Jin-Young;Lee, Hong Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • The effect of the additionally applied electrical current on the adhesion strength between electroless Cu and polyimide films was investigated. Peel tests were performed after applying electrical current within the range from 0.1 to 100 mA for the duration from 1 to 30 minutes. Sample with more than 1 mA of additional electrical current for 1 minute showed higher adhesion strength than that without additional electrical current. However, samples with 10 mA of additional electrical current for more than 10 miniutes showed the degradation of adhesion strength. Ra and RMS values of the peeled polyimide surface were proportional to the adhesion strength though there were no significant changes in the morphology of the peeled surfaces with varied amount and time-length of additional electrical current. Applying electrical current could increase the density of chemical bonding, which results in increase of the adhesion strength between copper and polyimide. However, in the case of applying additional electrical current for excessive amount or time, the degradation of the adhesion strength owing to the formation of copper oxide at the interface could occur.

Emulsion Polymerization of Co-polymers Having Both Hydrophilic and Hydrophobic Side Chains and Their Adhesion Properties

  • Takahashi, S.;Shibamiya, N.;Kasemura, T.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.1
    • /
    • pp.13-19
    • /
    • 2002
  • We have studied on the surface and adhesion properties for acrylic terpolymers, having both hydrophobic and hydrophilic side chains, synthesized via solution polymerization. In order to develop a waterborne material. we tried to synthesize these terpolymers via emulsion polymerization. The polymeric emulsion synthesized was mainly composed of methyl methacrylate (MMA), methoxy-polyethyleneglycol methacrylate (MPEGMA) having hydrophilic side chains and methoxypolypropyleneglycol methacrylate (MPEGMA) having hydrophobic side chains. The viscosities of this series increased with an increase in the content of the co-monomer such as MPEGMA and (MPEGMA). This behavior resulted in the increase in the diameter and heterogeneity of the emulsion particle via AFM observation. Furthermore. the tensile adhesion strength and 90-degree peel strength of the adhesive of these polymeric emulsions were measured. In the case of polymeric emulsion composed of the same content of both hydrophilic and hydrophobic component, the adhesion property showed the highest value. However, since the adhesion properties as a practical applicable adhesive were poor, some improvements were required. When the composition above was modified with butyl acrylate (BA), the improvement effect on adhesion strength was accepted. In particular, 90-degree peel strength increased up to a maximum of 400% of the original value.

  • PDF

Adhesion between Cu-18wt% Cr Alloy Film and Polyimide : Effect of Heat Treatment (Cu-18wt% Cr 합금박막과 폴리이미드사이의 접착력 : 열처리 영향)

  • 임준홍;김영호;한승희
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.6
    • /
    • pp.327-333
    • /
    • 1993
  • The effect of heat treatment on the adhesion between Cu-18wt% Cr film and polyimide has been studied by using T-peel test, AES, and XRD. Cu-18wt% Cr alloy and pure Cu films were sputter deposited onto pol-yimide. Cu was electroplated before and after heat treatment at $400^{\circ}C$ for 0.5 hr and 2 hrs respectively. The adhesion of metal film onto polyimide was considerably good before heat treatment, but heat treatment re-duced the peel adhesion strength in all specimens. The reduction in adhesion in adhesion strength values in the specimens which were plated after heat treatment was mainly due to Cr-O rich pahse formed in the metal/polyimide in-terface. In the specimens which were heat treated after plating, the enhanced ductility in the metal films con-tributes the peel adhesion strength by increasing the amount of deformation in metal strips.

  • PDF

Preparation of Adhesion Promoter for Lead Frame Adhesion and Application to Epoxy Composite

  • Kim, Jung Soo;Kim, Eun-jin;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.2
    • /
    • pp.48-54
    • /
    • 2022
  • A polymeric adhesion promoter was synthesized to improve the adhesive strength of the Ni lead frame/epoxy composite. Poly(itaconic acid-co-acrylamide) (IAcAAM) was prepared by copolymerizing itaconic acid and acrylamide. We compared the adhesive strength between the Ni lead frame and epoxy composite according to the molecular weight of IAcAAM. The molecular weight of IAcAAM was controlled using an initiator, which made it possible to use IAcAAM in the epoxy molding compound (EMC) manufacturing process by modulating the melting temperature. The adhesive strength of Ni lead frame/epoxy composite increased with the addition of IAcAAM to the epoxy composite. In addition, as the molecular weight of IAcAAM increased, the adhesive strength of the Ni lead frame/epoxy composite slightly increased. We confirmed that IAcAAM with an appropriate molecular weight can be used in the EMC manufacturing process and increase the adhesive strength of the Ni lead frame/epoxy composite.