Browse > Article
http://dx.doi.org/10.7473/EC.2022.57.2.48

Preparation of Adhesion Promoter for Lead Frame Adhesion and Application to Epoxy Composite  

Kim, Jung Soo (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Kim, Eun-jin (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Kim, Dong Hyun (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Publication Information
Elastomers and Composites / v.57, no.2, 2022 , pp. 48-54 More about this Journal
Abstract
A polymeric adhesion promoter was synthesized to improve the adhesive strength of the Ni lead frame/epoxy composite. Poly(itaconic acid-co-acrylamide) (IAcAAM) was prepared by copolymerizing itaconic acid and acrylamide. We compared the adhesive strength between the Ni lead frame and epoxy composite according to the molecular weight of IAcAAM. The molecular weight of IAcAAM was controlled using an initiator, which made it possible to use IAcAAM in the epoxy molding compound (EMC) manufacturing process by modulating the melting temperature. The adhesive strength of Ni lead frame/epoxy composite increased with the addition of IAcAAM to the epoxy composite. In addition, as the molecular weight of IAcAAM increased, the adhesive strength of the Ni lead frame/epoxy composite slightly increased. We confirmed that IAcAAM with an appropriate molecular weight can be used in the EMC manufacturing process and increase the adhesive strength of the Ni lead frame/epoxy composite.
Keywords
adhesion promoter; adhesive strength; epoxy composite; Ni lead frame; itaconic acid-co-acrylamide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. M. Song, C. E. Park, H. K. Yun, C. S Hwang, S. Y. Oh, and J. M. Park, "Adhesion improvement of epoxy resin/copper lead frame joints by azole compounds", J. Adhes. Sci. Technol., 12, 541 (1998).   DOI
2 J. Moon, Y. Huh, Y. Choe, and J. Bang, "Core-shell copolymer as highly effective additive for epoxy adhesives", Polymer(Korea), 45, 757 (2021).
3 V. Pang, Z. J. Thompson, G. D. Joly, F. S. Bates, and L. F. Francis, "Adhesion strength of block copolymer toughened epoxy on aluminum", ACS Appl. Polym. Mater., 2, 464 (2019).   DOI
4 J. M. Dean, N. E. Verghese, H. Q. Pham, and F. S. Bates, "Nanostructure toughened epoxy resins", Macromolecules, 36, 9267 (2003).   DOI
5 C. Declet-Perez, E. M. Redline, L. F. Francis, and F. S. Bates, "Role of localized network damage in block copolymer toughened epoxies", ACS Macro Lett., 1, 338 (2012).   DOI
6 Y. S. Thio, J. Wu, and F. S. Bates, "Epoxy toughening using low molecular weight poly(hexylene oxide)-poly(ethylene oxide) diblock copolymers", Macromolecules, 39, 7187 (2006).   DOI
7 L. S. Son, H. N. Lee, and H. K. Lee, "Effect of Alkali Surface Modification on Adhesion Strength between Electroless-Plated Cu and Polyimide Films", J. Surf. Sci. Eng, 45, 8 (2012).
8 G. Sharma, A. Kumar, M. Naushad, B. Thakur, D. V. N. Vo, B. Gao, A. A. Al-Kahtani, and F. J. Stadler, "Adsorptional-photocatalytic removal of fast sulphon black dye by using chitin-cl-poly(itaconic acid-co-acrylamide)/zirconium tungstate nanocomposite hydrogel", J. Hazard. Mater. Lett., 416, 125714 (2021).   DOI
9 S. Dan, S. Banivaheb, and H. Hashemipour, "Synthesis, characterization and absorption study of chitosan-g-poly(acrylamide-co-itaconic acid) hydrogel", Polym. Bull., 78, 1887 (2021).   DOI
10 Y. Aso, M. Sano, R. Yada, T. Tanaka, T. Aoki, H. Ohara, T. Kusukawa, K. Matsumoto, and K. Wada, "Biobased poly (itaconic acid-co-10-hydroxyhexylitaconic acid) s: synthesis and thermal characterization", Materials, 13, 2707 (2020).   DOI
11 S. Zhang, Y. Dang, X. Ni, C. Yuan, H. Chen, and A. Ju, "Preparation and stabilization of high molecular weight poly(acrylonitrile-co-2-methylenesuccinamic acid) for carbon fiber precursor", Polymers, 13, 3862 (2021).   DOI
12 Z. Abdollahi, and V. G. Gomes, "Synthesis and characterization of polyacrylamide with controlled molar weight, The University of Sydney NSW, Australia, 1 (2006).
13 C. Erbil, and N. Uyanik, "Interactions between poly(acrylamide)-poly(itaconic acid) and cerium (IV)-nitrilotriacetic acid redox pair in the synthesis of acrylamide and itaconic acid homo-and copolymers", Polym. Int., 50, 792 (2001).   DOI
14 J. Ding, C. Chen, and G. Xue, "The dynamic mechanical analysis of epoxy-copper powder composites using azole compounds as coupling agents", J. Appl. Polym. Sci., 42, 1459 (1991).   DOI
15 R. Furuno, Y. Takatuji, K. Kubo, and T. Haruyama, "Improvement of the adhesive strength of the leadframe and epoxy resin by forming organic molecules-metal composite interface", Electron. Commun. Jpn., 100, 67 (2017).   DOI
16 M. Kitano, A. Nishimura, S. Kawai, and K. Nishi, "Analysis of package cracking during reflow soldering process", 26th Annual Proceedings Reliability Physics Symposium 1988, 90 (1988).
17 S. Luo, and C. P. Wong, "Effect of UV/ozone treatment on surface tension and adhesion in electronic packaging", IEEE Transactions on Components and Packaging Technologies, 24, 43 (2001).   DOI
18 N. Gladkikh, Y. Makarychev, M. Petrunin, M. Maleeva, L. Maksaeva, and A. Marshakov, "Synergistic effect of silanes and azole for enhanced corrosion protection of carbon steel by polymeric coatings", Prog. Org. Coat., 138, 105386 (2020).   DOI
19 J. H. Yim, D. H. Kim, and Y. S. Ko, "Ring-opening polymerization of L-lactide with glycidol as initiator", Polymer(Korea), 37, 606 (2013).
20 Y. C. Kim, O. J. Cha, and K. M. Kim, "Study on self-extinguishing epoxy resin composition", J. Adhes. Interface, 11, 168 (2010).
21 M. S. Kim, H. Y. Kim, S. H. Yoo, J. H. Kim, and J. K. Kim, "Effect of curing agent on the curing behavior and joint strength of epoxy adhesive", J. KWJS, 29, 54 (2011).
22 N. Srikanth, L. Chan, amd C. J. Vath, "Adhesion improvement of EMC-leadframe interface using brown oxide promoters", Thin Solid Films, 504, 397 (2006).   DOI
23 S. C. Chao, W. C. Huang, J. H. Liu, J. M. Song, P. Y. Shen, C. L Huang, L. T. Hung, and C. H. Chang, "Oxidation characteristics of commercial copper-based lead frame surface and the bonding with epoxy molding compounds", Microelectron. Reliab., 99, 161 (2019).   DOI
24 S. M. Song, K. Cho, C. E. Park, H. K. Yun, and S. Y. Oh, "Synthesis and characterization of water-soluble polymeric adhesion promoter for epoxy resin/copper joints", J. Appl. Polym. Sci., 85, 2202 (2002).   DOI
25 J. Zeng, R. Fu, Y. Shen, H. He, and X. Song, "High thermal conductive epoxy molding compound with thermal conductive pathway", J. Appl. Polym. Sci., 113, 2117 (2009).   DOI
26 L. Duo, Z. Zhang, K. Zheng, D. Wang, C. Xu, and Y. Xia, "Perhydropolysilazane derived SiON interfacial layer for Cu/epoxy molding compound composite", Surf. Coat. Technol., 391, 125703 (2020).   DOI
27 S. N. A. M. Jamil, M. Khairuddin, and R. Daik, "Preparation of acrylonitrile/acrylamide copolymer beads via a redox method and their adsorption properties after chemical modification", e-Polymers, 15, 45 (2015).   DOI
28 J. H. Roh, J. H. Lee, N. I. Kim, H. M. Kang, T. H. Yoon, and K. H. Song, "DSC analysis of epoxy molding compound with plasma polymer-coated silica fillers", J. Appl. Polym. Sci., 90, 2508 (2003).   DOI
29 H. Lin, and G. S. Frankel, "Atmospheric corrosion of Cu by UV, ozone and NaCl", Corros. Eng. Sci. Technol., 48, 461 (2013).   DOI
30 S. C. T. Kwok, and M. M. F. Yuen, "Potential-assisted assembly of thiol-based materials for reliable copper-epoxy interface", 2012 14th International Conference on Electronic Materials and Packaging, 1 (2012).
31 M. Lebbai, J. K. Kim, and M. M. F. Yuen, "Effects of moisture and elevated temperature on reliability of interfacial adhesion in plastic packages", J. Electron. Mater, 32, 574 (2003).   DOI
32 J. K. Lim, "Tensile, bending and shear strength distributions of adhesive-bonded butt joint specimens", Compos. Sci. Technol., 65, 1421 (2005).   DOI
33 M. D. Olawale, J. A. Obaleye, and E. O. Oladele, "Itaconic acid based coordination polymer: mechanochemical synthesis, characterization and vapochromic study", Niger. J. Chem. Res., 8, 280 (2020).