DOI QR코드

DOI QR Code

Effect of Additional Electrical Current on Adhesion Strength between Copper and Polyimide Films

인가 전류가 구리 도금 피막과 폴리이미드 필름의 접합력에 미치는 영향

  • Lee, Jang-Hun (Heat Treatment & Plating Technology Center, Incheon Regional Division, Korea Institute of Industrial Technology) ;
  • Han, Yoonsung (Heat Treatment & Plating Technology Center, Incheon Regional Division, Korea Institute of Industrial Technology) ;
  • Lee, Ho-Nyun (Heat Treatment & Plating Technology Center, Incheon Regional Division, Korea Institute of Industrial Technology) ;
  • Hur, Jin-Young (Heat Treatment & Plating Technology Center, Incheon Regional Division, Korea Institute of Industrial Technology) ;
  • Lee, Hong Kee (Heat Treatment & Plating Technology Center, Incheon Regional Division, Korea Institute of Industrial Technology)
  • 이장훈 (한국생산기술연구원 인천지역본부 열표면기술센터) ;
  • 한윤성 (한국생산기술연구원 인천지역본부 열표면기술센터) ;
  • 이호년 (한국생산기술연구원 인천지역본부 열표면기술센터) ;
  • 허진영 (한국생산기술연구원 인천지역본부 열표면기술센터) ;
  • 이홍기 (한국생산기술연구원 인천지역본부 열표면기술센터)
  • Received : 2013.01.25
  • Accepted : 2013.02.28
  • Published : 2013.02.28

Abstract

The effect of the additionally applied electrical current on the adhesion strength between electroless Cu and polyimide films was investigated. Peel tests were performed after applying electrical current within the range from 0.1 to 100 mA for the duration from 1 to 30 minutes. Sample with more than 1 mA of additional electrical current for 1 minute showed higher adhesion strength than that without additional electrical current. However, samples with 10 mA of additional electrical current for more than 10 miniutes showed the degradation of adhesion strength. Ra and RMS values of the peeled polyimide surface were proportional to the adhesion strength though there were no significant changes in the morphology of the peeled surfaces with varied amount and time-length of additional electrical current. Applying electrical current could increase the density of chemical bonding, which results in increase of the adhesion strength between copper and polyimide. However, in the case of applying additional electrical current for excessive amount or time, the degradation of the adhesion strength owing to the formation of copper oxide at the interface could occur.

Keywords

References

  1. G. Rabilloud, High Performance Polymers: Polyimides in Electronics, Technip, Paris, 2000.
  2. M. Crosh, K. Mittal, Polyimides: Fundamentals and Applications, Marcel Dekker, New York, 1996.
  3. Y.-S. Lin, H.-M. Liu, C.-L. Chen, Surf. Coat. Technol. 200 (2006) 3775. https://doi.org/10.1016/j.surfcoat.2004.11.031
  4. S. H. Kim, S. W. Na, N.-E. Lee, Y. W. Nam, Y.-H. Kim, Surf. Coat. Technol. 200 (2005) 2072. https://doi.org/10.1016/j.surfcoat.2005.05.021
  5. A. Ebe, E. Takahashi, Y. Iwamoto, N. Kuratani, S. Nishiyama, O. Imai, K. Ogata, Y. Setsuhara, S. Miyake, Thin Solid Films 281-282 (1996) 356. https://doi.org/10.1016/0040-6090(96)08629-4
  6. S. H. Kim, J. K. Park, K. S. Oh, J. Kor. Fiber Soc. 31 (1994) 57.
  7. S. Ikeda, H. Yanagimoto, K. Akamatsu, H. Nawafune, Adv. Funct. Mater. 17 (2007) 889. https://doi.org/10.1002/adfm.200600527
  8. L.-S. Son, H.-N. Lee, H. K. Lee, J. Kor. Inst. Surf. Eng. (2012) 8.
  9. H. K. Yun, K. Cho, J. K. Kim, C. E. Park, S. M. Sim, S. Y. Oh, M. Park, Polymer 38 (1997) 827. https://doi.org/10.1016/S0032-3861(96)00592-7
  10. H. J. Lee, J. Yu, J. Electron. Mater. 37 (2008) 1102. https://doi.org/10.1007/s11664-007-0317-z
  11. B. K. Furman, K. D. Childs, H. Clearfield, R. Davis, S. Purushothaman, J. Vac. Sci. Technol. A 10 (1992) 2913. https://doi.org/10.1116/1.577729
  12. S. A. Chambers, V. A. Loebs, K. K. Chakravorty, J. Vac. Sci. Technol. A 8 (1990) 875. https://doi.org/10.1116/1.576933
  13. H.-N. Lee, Y. Han, J.-H. Lee, J.-Y. Hur, H. K. Lee, submitted.
  14. K.-J. Min, S.-C. Park, J.-J. Lee, K.-H. Lee, G.-H. Lee, Y.-B. Park, Journal of the Microelectronics & Packaging Society 14 (2007) 49.
  15. K.-J. Min, S.-C. Park, Y.-B, Park, K. H. Lee, Y. Jeong, J. Korean Phys. Soc. 54 (2009) 1273. https://doi.org/10.3938/jkps.54.1273
  16. B.-I. Noh, J.-W. Yoon, J.-H. Choi, S.-B. Jung, Microelectronic Engineering 88 (2011) 718. https://doi.org/10.1016/j.mee.2010.06.044
  17. Y. Li, Y. Yang, X. Feng, J. Mater. Sci. Technol. 24 (2008) 410.
  18. W.-J. Lee, Y.-S. Lee, S.-K. Rha, Y.-J. Lee, K.-Y. Lim, Y.-D. Chung, C.-N. Whang, Appl. Surf. Sci. 205 (2003) 128. https://doi.org/10.1016/S0169-4332(02)01016-4
  19. J.-Y. Park, Y.-S. Jung, J. Cho, W.-K. Choi, Appl. Surf. Sci. 252 (2006) 5877. https://doi.org/10.1016/j.apsusc.2005.08.019
  20. S. Iwamori, T. Miyashita, S. Fukuda, S. Nozaki, N. Fukuda, K. Sudoh, J. Adhesion 63 (1997) 309. https://doi.org/10.1080/00218469708017225

Cited by

  1. Effect of Fabric Structure and Plating Method on EMI Shielding Property of Conductive Fabric vol.48, pp.4, 2015, https://doi.org/10.5695/JKISE.2015.48.4.149