• Title/Summary/Keyword: Adenine

Search Result 424, Processing Time 0.032 seconds

Optimal Medium Compositions for Plant Regeneration via Adventitious Shoot Formation Using 'Fuji' Apple Leaf Explants (사과 '후지'의 잎 절편체로부터 신초 기관형성을 통한 식물체 재생에 적합한 배지조성)

  • Lee, Yoon Kyung;;Hyung, Nam-In
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.310-317
    • /
    • 2019
  • Plant regeneration protocols for adventitious shoot organogenesis from apple (Malus domestica 'Fuji') leaf explants were developed in the present study. The effects of different basal media, types and concentrations of carbon sources, and concentrations of plant growth regulators were evaluated to determine the optimal shoot regeneration conditions for 'Fuji' apple leaf explants. On different treatments involving combinations of basal media, LS and N6 media, and different types and concentrations of cytokinins, 6-benzyl-adenine (BA) and thidiazuron (TDZ), shoot regeneration rates were the highest in the N6 medium combined with BA. Among the plant growth regulator and carbon source combination treatments, 5.0 mg/L BA, and 0.1 mg/L α-naphthalene acetic acid (NAA) with 40 g/L sorbitol was the optimal combination for shoot regeneration. In addition, the optimal sorbitol concentrations for shoot regeneration were 40 g/L and 60 g/L. The highest regeneration (81.8%) was achieved using 40 g/L sorbitol. The regenerated shoots elongated and rooted on rooting medium, consisting of 1/4 MS medium with 0.2 mg/L indole-3-butyric acid (IBA). The plantlets were acclimatized and the regenerated plants exhibited normal phenotypes.

Plant Regeneration via Adventitious Shoot Formation in Platycodon grandiflorum (Jacq. A. DC.) (도라지 (Platycodon grandiflorum (Jacq.) A. DC.) 부정아 형성을 통한 식물체 재분화)

  • Kim, Ju Young;Na, Hyun Sun;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.330-334
    • /
    • 2017
  • To investigate optimal conditions for plant regeneration in Platycodon grandiflorum (Jacq. A. DC.).Both leaf and hypocotyl explants were cultured on Murashige& Skoog's (MS) medium supplemented with combinations of 0.1, 0.5, 1.0, or 2.0 mg/L cytokinins (BA and kinetin) and 1.0 mg/L 2,4-D for 6 weeks, respectively. According to the type of explant, the total shoot organogenesis (56.38%) in leaf explants was higher than in hypocotyls (28.20%). In comparison with kinetin and BA for the plant regeneration, the frequency (70.38%) of leaf explants was higher in combination with kinetin and 2,4-D than of BA with 2,4-D (42.38%), whereas the frequency (35.56%) of hypocotyls explants was higher in BA combination than kinetin combination (20.83%). Thehighest frequency (94.20%) was observed from the cultures of leaf explants on the MS medium supplemented with 1.0 mg/L kinetin and 1.0 mg/L 2,4-D. Upon transfer onto 1/2 MS basal medium containing 3% sucrose, shoots developed into plantlets with roots, and were well grown in soil in the greenhouse. These results lead us to speculate that the optimization of culture conditions was responsible for the mass propagation from in vitro cultures of Platycodon grandiflorum (Jacq. A. DC.).

Inhibitory Effects of Maesaengi (Capsosiphon fulvescens) Extracts on Angiotensin Converting Enzyme and α-Glucosidase (매생이 추출물의 angiotensin converting enzyme 및 α-glucosidase 활성 저해 효과)

  • Cho, Eun-Kyung;Yoo, Seul-Ki;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.811-818
    • /
    • 2011
  • Physiological activities of hot water (MHW) and 80% ethanol (MEH) extracts from Maesaengi (Capsosiphon fulvescens) were investigated in this study. For the evaluation of antioxidant activities for MHW and MEH, 2,2-diphenyl-1-pic-rylhydrazyl (DPPH) radical scavenging activity and superoxide dismutase (SOD)-like activity were measured. DPPH radical scavenging activity and SOD-like activity of MHW, and MEH were increased weekly in a dose-dependent manner, and were about 10.8, 13.8, 62.4, and 27.1% at 10 mg/ml, respectively. The angiotensin converting enzyme (ACE) inhibitory activities of MHW and MEH were about 5.9% and 49.7% at 1 mg/ml, respectively. The ${\alpha}$-glucosidase inhibitory effect of MHW and MEH were about 1.4% and 67.3% at 1 mg/ml, respectively. To determine the influence of MHW and MEH on alcohol metabolizing activity, the generating activities of reduced-nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were measured. Facilitating rates of ADH activity by MHW and MEH were increased weekly in a dose-dependent manner and ALDH activities were not detected. Elastase inhibitory activities of MHW and MEH were 75.9% and 51.2% at 10 mg/ml, respectively.

In vitro activity comparison of Erm proteins from Firmicutes and Actinobacteria (Firmicutes와 Actinobacteria에 속하는 세균들의 Erm 단백질 in vitro 활성 비교)

  • Jin, Hyung Jong
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.269-277
    • /
    • 2016
  • Erm proteins methylate the specific adenine residue ($A_{2058}$, E. coli numbering) on 23S rRNA to confer the $MLS_B$ (macrolidelincosamide-streptogramin B) antibiotic resistance on a variety of microorganisms ranging from antibiotic producers to pathogens. When phylogenetic tree is constructed, two main clusters come out forming each cluster of Actinobacteria and Firmicutes. Two representative Erm proteins from each cluster were selected and their in vitro methylation activities were compared. ErmS and ErmE from Actinobacteria cluster exhibited much higher activities than ErmB and ErmC' from Firmicutes: 9 fold difference when ErmC' and ErmE were compared and 13 fold between ErmS and ErmB. Most of the difference was observed and presumed to be caused by N-terminal and C-terminal extra region from ErmS and ErmE, respectively because NT59TE in which N-terminal end 59 amino acids was truncated from wild type ErmS exhibited only 22.5% of wild type ErmS activity. Meanwhile, even NT59TE showed three and 2.2 times more activity when it was compared to ErmB and C, respectively, suggesting core region from antibiotic producers contains extra structure enabling higher activity. This is suggested to be possible through the extra region of 197RWS199 (from both ErmS and ErmE), 261GVGGSLY267 (from ErmS), and 261GVGGNIQ267 (from ErmE) and 291SVV293 (from ErmS) and 291GAV293 (from ErmE) by multiple sequence alignment.

Physiological Activities of Hot Water Extracts from Ecklonia cava Kjellman (감태 열수 추출물의 생리활성)

  • Cho, Eun-Kyung;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1675-1682
    • /
    • 2010
  • The biological activity of hot water extract from Ecklonia cava Kjellman (ECE) was investigated to assess antioxidative, anti-skin aging, and nitrite scavenging abilities, as well as alcohol metabolizing activities. Antioxidant activity of ECE was measured by using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity and superoxide dismutase (SOD)-like activity. DPPH radical scavenging activity and SOD-like activity of ECE increased in a remarkably dose-dependent manner, and were about 91.4% and 75% at 1 mg/ml, respectively. The xanthine oxidase inhibitory activity was indicated to be about 70% at 1 mg/ml of ECE. Nitrite scavenging ability of ECE showed to be 93.6% at 1 mg/ml and pH 1.2. The influence of ECE on alcohol metabolism was demonstrated through the generating activity of reduced-nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). The facilitating rate of ADH and ALDH activity by ECE was 167.2% and 334% at 10 mg/ml, respectively. In addition, tyrosinase and elastase inhibitory activities of ECE were 58% and 72% at 10 mg/ml, respectively. These results indicated that ECE has valuable biological attributes owing to its antioxidant, nitrite scavenging, alcohol metabolizing, and elastase and tyrosinase inhibitory activities.

The Hepatoprotective Effects of Hep G2 Cells and the Alcohol-Metabolizing Enzyme Activities of Lemon-Myrtle (Backhousia citriodora) Leaf Extracts (레몬 머틀 잎 추출물의 Hep G2 세포에서의 간 보호 효과 및 알코올대사 효소활성)

  • Jung, Kyung Im;Kim, Pan Kil;Gal, Sang Wan;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1262-1268
    • /
    • 2017
  • Lemon myrtle (Backhousia citriodora), a plant in the Myrtaceae family, is native to the semitropical rain-forests of Queensland and is presumably the most commercialized native spice. In Australian thousands of lemon-myrtle trees are under tillage. This study was carried out to investigate the alcohol metabolism, hepatoprotective effects and antidiabetic, tyrosinase inhibitory activity of hot-water (LMW) and 80% ethanol (LME) extracts from lemon-myrtle leaves. The alpha-glucosidase (${\alpha}$-glucosidase) inhibitory activities of the LMW and LME extracts were 7.66% and 40.29% at 1 mg/ml (p<0.05), respectively. The tyrosinase inhibitory activity of the LME extract was about 38.26 % at 1 mg/ml. The effects the LMW and LME extracts had on alcohol-metabolizing activities were determined by measuring the generation of reduced nicotinamide-adenine dinucleotide (NADH) by acetaldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH). The ADH activities of the LMW and LME extracts significantly increased in a dose-dependent manner and were about 154.40% and 192.03% at 1 mg/ml, respectively (p<0.05). The ALDH activities of the LMW and LME extracts also significantly increased in a dose-dependent manner and were about 151.14% and 192.34% at 1 mg/ml, respectively (p<0.05). At $100{\mu}g/ml$, the LMW and LME extracts showed significant protective effects against tacrine-induced cytotoxicity in Hep G2 cells. The results suggested that Backhousia citriodora leaf extracts have the potential to be significant sources for natural health products.

Anti-inflammatory Effects of Black Cherry Tomato (Lycopersicon esculentum M.) Juice on LPS-induced RAW 264.7 Cells (LPS로 유도된 RAW 264.7 세포에 대한 흑색 방울토마토 주스의 항염증 효과)

  • Jung, Kyung Im;Ha, Nayeon;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.569-576
    • /
    • 2018
  • This study was carried out to investigate the antioxidative, nitrite-scavenging, alcohol-metabolizing, and anti-inflammatory effects of black-cherry tomato juice (BCTJ) on LPS-induced RAW 264.7 cells. The total phenol content of the BCTJ was $156.83{\mu}g\;tannic-acid-equivalent/ml$. The antioxidative effects of BCTJ were measured using DPPH radical-scavenging activity and SOD-like assay. DPPH radical-scavenging activity of BCTJ was increased in a dose-dependent manner (p<0.05) and was 83.39% at 40%. SOD-like activity of BCTJ was 22.01% at 100%. The effects of BCTJ on alcohol-metabolism were determined by measuring generations of reduced nicotinamide adenine dinucleotides (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). ADH and ALDH activities were 198.87% and 181.89% at 40%, respectively. Nitric scavenging activities of BCTJ were 85.06%, 58.25%, and 43.68% at pH values 1.2, 3.0, and 6.0, respectively, at 50%. Anti-inflammatory effects were examined in LPS-stimulated RAW 264.7 cells. Nitric-oxide production was reduced to 83.55% by the addition of BCTJ at 10%. These results suggest that black-cherry tomato juice has great potential as a resource for natural health products.

Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2

  • Roshankhah, Shiva;Rostami-Far, Zahra;Shaveisi-Zadeh, Farhad;Movafagh, Abolfazl;Bakhtiari, Mitra;Shaveisi-Zadeh, Jila
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.4
    • /
    • pp.193-198
    • /
    • 2016
  • Objective: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as $H_2O_2$. We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of $H_2O_2$, which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Methods: Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and $120{\mu}M$ concentrations of $H_2O_2$. After 1 hour incubation at $37^{\circ}C$, sperms were evaluated for motility and viability. Results: Incubation of sperms with 10 and $20{\mu}M\;H_2O_2$ led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and $80{\mu}M\;H_2O_2$, and viability decreased in both groups in 40, 60, 80, and $120{\mu}M\;H_2O_2$. However, no statistically significant differences were found between the G6PD-deficient group and controls. Conclusion: G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by $H_2O_2$, and the reducing equivalents necessary for protection against $H_2O_2$ are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

Physiochemical Properties, and Antioxidative and Alcohol-metabolizing Enzyme Activities of Nectarine Vinegar (천도복숭아 식초의 이화학적 특성과 항산화 및 알코올 대사 효소 활성)

  • Jung, Kyung Im;Jung, Han Nah;Ha, Na Yeon;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1193-1200
    • /
    • 2018
  • This study investigated the physiochemical properties, antioxidative, nitrite-scavenging, and alcohol metabolism enzyme activities of nectarine vinegar prepared by a traditional fermentation method. The pH of nectarine vinegar was 3.70, the sugar content was $8.87^{\circ}Brix$, and the total acidity was 6.29%. Among organic acids detected, acetic acid was highest at 32.42 mg/ml, followed by lactic acid, malic acid, and succinic acid. Total phenol content of the nectarine vinegar was $121.84{\mu}g$ tannic acid equivalents (TAE)/100 ml. The antioxidative effects of muskmelon vinegar were measured using 1,1-Diphenyl2-picrylhydrazy (DPPH) radical-scavenging activity and superoxide dismutase (SOD) assay. DPPH of nectarine vinegar was increased in a dose-dependent manner, which was 84.47% at 40% concentration. SOD activity was increased in a dose-dependent manner, which was 89.06% at 60% concentration. Nitric scavenging activities of nectarine vinegar were 94.17%, 76.91%, and 20.21% at pH values 1.2, 3.0, and 6.0 at 100% concentration, respectively. The effects of nectarine vinegar on alcohol-metabolism were determined by measuring the generation of reduced nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). ADH and ALDH activities of nectarine vinegar were increased in a dose-dependent manner, which were 153.61% and 178.20 % at 60% concentration, respectively. These results suggest that nectarine vinegar has great potential as a resource for high quality functional health beverages.

DNA Sequence Analysis of 1-Nitropyrene-4,5-Oxide and 1-Nitropyrene-9,10-Oxide Induced Mutations in the hprt Gene of Chinese Hamster Ovary Cells

  • Kim, Hyun-Jo;Kim, Tae-Ho;Lee, Sun-Young;Lee, Dong-Hoon;Kim, Sang-In;Pfeifer, Gerd P.;Kim, Seog K.;Lee, Chong-Soon
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.114-123
    • /
    • 2005
  • Nitropyrene, the predominant nitropolycyclic hydrocarbon found in diesel exhaust, is a mutagenic and tumorigenic environmental pollutant that requires metabolic activation via nitroreduction and ring oxidation. In order to determine the role of ring oxidation in the mutagenicity of 1-nitropyrene, its oxidative metabolites, 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide, were synthesized and their mutation spectra were determined in the coding region of hprt gene of CHO cells by a PCR amplification of reverse-transcribed hprt mRNA, followed by a DNA sequence analysis. A comparison of the two metabolites for mutation frequencies showed that 1-nitropyrene 9,10-oxide was 2-times higher than 1-nitropyrene 4,5-oxide. The mutation spectrum for 1-nitropyrene 4,5-oxide was base substitutions (33/49), one base deletions (11/49) and exon deletions (5/49). In the case of 1-nitropyrene 9,10-oxide, base substitutions (27/50), one base deletions (15/50), and exon deletions (8/50) were observed. Base substitutions were distributed randomly throughout the hprt gene. The majority of the base substitutions in mutant from 1-nitropyrene 4,5-oxide treated cells were $A{\rightarrow}G$ transition (15/33) and $G{\rightarrow}A$ transition (8/33). The predominant base substitution, $A{\rightarrow}G$ transition (11/27) and $G{\rightarrow}A$ transition (8/27), were also observed in mutant from 1-nitropyrene 9,10-oxide treated cells. The mutation at the site of adenine and guanine was consistent with the previous results, where the sites of DNA adduct formed by these compounds were predominant at the sites of purines. A comparison of the mutational patterns between 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide showed that there were no significant differences in the overall mutational spectrum. These results indicate that each oxidative metabolite exhibits an equal contribution to the mutagenicity of 1-nitropyrene, and ring oxidation of 1-nitropyrene is an important metabolic pathway to the formation of significant lethal DNA lesions.