• Title/Summary/Keyword: Adenine

Search Result 424, Processing Time 0.026 seconds

Plant Regeneration from the Segments of Petioles of Cacalia firma (병풍쌈의 엽병 조직 절편으로부터 식물체 재분화)

  • Choi, Soo-Wan;Lim, Soon;Park, Wan-Geun;Choi, Yong-Eui
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.483-488
    • /
    • 2011
  • Cacalia firma recently has been used increasingly as leaf vegetables but endangered in natural forest. In this work, we established the plant regeneration via adventitious shoot formation from petiole segments of seedling and in vitro plantlets. Wounding of seed coats and $GA_3$ treatments were effective to induce in vitro germination of seeds, whereas, seed did not germinate at all without these treatment. When cotyledon, leaf, petiole, and root segments of seedling were cultured on medium with 2 $mg{\cdot}L^{-1}$ benzyl adenine (BA) and 0.5 $mg{\cdot}L^{-1}$ naphthaleneacetic acid (NAA), petiole segments showed highest number of shoots per explant among the other segments. Among the various kinds of cytokinins, BA, isopentyl adenine (2-ip), kinetin, zeatin, thidiazuron (TDZ), TDZ and BA treatments were effective to induce high frequency of adventitious shoot formation from petiole segments of in vitro propagated plants. NAA stimulated the frequency of adventitious shoot formation but not for number of adventitious shoots per explants compared to TDZ or BA treatment alone. Most of adventitious shoots were developed directly from surfaces of explants. Adventitious shoots were transferred on medium with IBA for root formation, thereafter the plantlets were successfully transferred to soil.

A Gene-based dCAPS Marker for Selecting old-gold-crimson (ogc) Fruit Color Mutation in Tomato (토마토 과색 돌연변이 유전자(old-gold-crimson) 선발을 위한 dCAPS 분자표지 개발)

  • Park, Young-Hoon;Lee, Yong-Jae;Kang, Jum-Soon;Choi, Young-Whan;Son, Beung-Gu
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.152-155
    • /
    • 2009
  • The old-gold-crimson ($og^c$) fruit color mutation produces deep red tomato fruit with high lycopene content. age is a null mutation allele of lycopene-${\beta}$-cyclase (Crt-b) gene (B locus) that converts lycopene to ${\beta}$-carotene in the cartenoid biosynthesis pathway in tomato. Breeding of high lycopene tomato cultivars can be accelerated by marker-assisted selection (MAS) for introgression of $og^c$ allele by using a gene-based DNA marker. In order to develop a marker, single nucleotide deletion of adenine(A) with. in a poly-A repeat that has been known to be responsible for frame-shift mutation of $og^c$ was confirmed by resequencing mutant allele and wild-type allele at B locus of several tomato lines. For allele discrimination and detection of $og^c$, derived CAPS (dCAPS) approach was used by designing a primer that artificially introduced restriction enzyme recognition site of Hin fI in PCR products from $og^c$ allele. This dCAPS marker is co-dominant gene-based PCR marker that can be efficiently used for MAS breeding program aiming the development of high lycopene tomato.

The Effect of Environmental Factors on the Production of Phytoalexin in Papper plant(Capsicum annumm L.) (환경인자가 고추인 생체방어물질 생성에 미치는 영향)

  • 심영은;신동현;이인중;이건주;정규영;정형진
    • Journal of Life Science
    • /
    • v.11 no.6
    • /
    • pp.603-611
    • /
    • 2001
  • Phytolalexins are produced in plants affected by various environmental factors such as fungal infection treatment with many chemicals and irradiation by ultraviolet light. When pepper and tobacco bel suspension cultures were grown on a basal MS medium supplemented with 2,4-D(1mg/$\ell$, benzyl adenine(0.001 mg/$\ell$) and 100$\mu$ M jasmonic acid, the production of capsidiol was observed. The total of compound found in pepper plant were around seventy and thirty of them were located intissue-specific manner. 1-propanethiol, $\alpha$-D-xylofuranoside, phenol, hexadecanonic acid ethyl tridecanoate, phytol, linoleic acid and capsidiol are those which have change the production level by treatments, such as the inoculation of Phytophthora capsici Leonian, the metalaxyl treatment and the UV-B irradiation, respectively. The content of capsidiol on inoculation of P. capsici with metalxyl suspension in soil were higher than those of P.capsici without metalaxyl. When the soil dernch of metalaxyl treatment (1$\mu\textrm{g}$/${mu}ell$)was delayed after inoculation, the content of capsidiol were higher than that of before. Irrradiated UB-B the production on capsidiol was identified only at leaf, and contents were the highest for 24 hrs incubation after 20 minutes irradiation.

  • PDF

Inhibitory action of adenosine on sinus rate in isolated rabbit SA node (토끼 동방결절 박동수에 대한 아데노신의 작용)

  • Chae, Hurn;Suh, Kyung-Phlill;Kim, Ki-Whan
    • Journal of Chest Surgery
    • /
    • v.16 no.2
    • /
    • pp.199-212
    • /
    • 1983
  • The inhibition/influences of adenine compounds on the heart have been described repeatedly by many investigators, since the first report by Druny and Szent-Gyorgyi [1929]. These studies have shown that adenosine and adenine nucleotides have an over-all effect similar to that of acetylcholine [ACh] by slowing and weakening the heartbeat. The basic cellular and membrane events underlying the inhibitory action of adenosine on sinus rate, however, are not well understood. Furthermore, the physiological role of adenosine in regulation of the heartbeat remains still to be elucidated. Therefore, this study was undertaken in order to examine the response of rabbit SA node to adenosine and to compare the response to that of ACh. Isolated SA node preparation, whole atrial pair, or left atrlal strip was used in each experiment. Action potentials of SA node were recorded through the intracellular glass microelectrodes, which were filled with 3M KCI and had resistance of 30-50 M. All experiments were performed in a bicarbonate-buffered Tyrode solution which was aerated with 3% $CO_2-97%$ $O_2$ gas mixture and kept at $35^{\circ}C$. Spontaneous firing rate of SA node at 35C [Mean + SEM, n=16] was 154 + 3.3 beats/min. The parameters of action potentials were: maximum astolic potential [MDP], -731.7mV: overshoot [OS], 9 + 1.4mV; slope of pacemaker potential [SPP], 94 3.0mV/sec.Adenosine suppressed the firing rate of SA node in a dose dependent manner. This inhibitory effect appeared at the concentration of $10^{-6}M$ and was potentiated in parallel with the increase in adenosine concentration. Changes in action potential by adenosine were dose-dependent increase of MDP and decrease of SPP until $10^{-4}$. Above this concentration, however, the amplitude of action potential decreased markedly due to the simultaneous decrease of both MDP and OS. All these effects of adenosine were not affected by pretreatment of atropine [2mg/l] and propranolol [$5{\times}10^{-6}M$]. ACh [$10^{-6}M$] responses on action potential were similar to those of adenosine by increasing MDP and decreasing SPP. These effects of ACh disappeared by pretreatment of atropine [2mg/1]. Inhibition/effects of adenosine and ACh on sinus rate were enhanced synergistically with the simultaneous administration of adenosine and ACh. Marked decrease of overshoot potential was the most prominent feature on action potential. Dipyridamole [DPM], which is known to block the adenosine transport across cell membrane, definitely potentiated the action of adenosine . Adenosine suppressed the sinus rate and atrial contractility in the same dosage range, even in the reserpinized preparation. Above` results suggest that adenosine suppresses pacemaker activity, like ACh, by acting directly on the membrane of SA node, increasing MDP and decreasing SPP.

  • PDF

Regulation of Corynebacterium ammoniagenes purF and Isolation of purF-Specific Regulatory Proteins (Corynebacterium ammoniagenes에서 purF 유전자의 조절 및 이에 특이적인 조절 단백질의 분리)

  • Lee, Seok-Myung;Kim, Youn-Hee;Lee, Heung-Shick
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.233-238
    • /
    • 2009
  • The expression of Corynebacterium ammoniagenes purF was analyzed by utilizing a plasmid carrying a cat gene fused to the purF promoter region. Adenine and guanine repressed the expression of the purF gene by 20~30% but hypoxanthine did not exert such repressive effect. The expression purF was maximal at the late log phase and remained constant throughout the stationary phase. Promoter $P_{180}$ which was developed in C. glutamicum was also functional in C. ammoniagenes, achieving maximal activity at the late log phase. The promoter outperformed Escherichia coli $P_{tac}$ promoter by 40~50% level. DNA-affinity purification identified a protein which could bind to the promoter region of the purF gene. The protein showed high similarity to the CRP-family transcriptional regulator encoded by NCgl0120 in C. glutamicum. The size of the screened protein agreed with the expected protein size from the ORF NCgl0120. The corresponding gene in C. ammoniagenes encoded a 42 kDa polypeptide composed of 400 amino acids with expected pI of 4.9. The encoded protein showed 14.1% and 15.8% identity with E. coli and Bacillus subtilis PurR, respectively, suggesting that the isolated protein might be a novel type of regulatory protein involved in the regulation of purine metabolism.

Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling

  • Yang, Kyeong-Eun;Jang, Hyun-Jin;Hwang, In-Hu;Hong, Eun Mi;Lee, Min-Goo;Lee, Soon;Jang, Ik-Soon;Choi, Jong-Soon
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.341-349
    • /
    • 2020
  • Background: The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. Methods: We performed senescence-associated β-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)+/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. Results: Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD+/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD+/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. Conclusion: Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.

Multiple Shoot Induction and Bulb Mass Proliferation System by in Vitro Immature Spathe Culture of Elephant Garlic (Allium ampeloprasum L.) (코끼리마늘(Allium ampeloprasum L.)의 기내 미숙총포 배양을 통한 다신초유도와 종구대량증식 시스템)

  • Kwon, Young Hee;Jeong, Jae Hyun;Lee, Jae Sun;Jeon, Jong Ok;Park, Young Uk;Min, Ji Hyun;Chang, Who Bong;Lee, Sang Young;Youn, Cheol Ku;Kim, Ki Hyun
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.355-362
    • /
    • 2018
  • This study was performed to develop the mass propagation system using tissue culture technique to supply the seeds of Elephant garlic (Allium ampeloprasum L.) which has difficulty in propagation. Immature spathe of Elephant garlic was cultured on Murashige & Skoog (MS) medium supplemented with two plant growth regulators, naphthaleneacetic acid (NAA) and kinetin. After 6 weeks of culture, the highest number of shoot (14.9/explant) was obtained when the immature spathe with 10 cm length was cultured right after harvesting. In MS medium supplemented with 2 mg/L kinetin and 0.5 mg/L NAA, the most vigorous growth characteristics was observed, the shoot number was 14.9/explant, its length was 11.3 cm, and its fresh weight was 2.5 g. When the bulblets were cultured in MS medium with 2 mg/L kinetin and 0.5 mg/L NAA, the addition of 30 mg/L adenine improved their proliferation and growth significantly, the highest bulblet formation rate (48%) was obtained. The addition of 7% sucrose also increased the bulblet formation rate at the highest frequency of 98.2%. The shoots were shown be more vigorously proliferated at the secondary subculture stage rather than primary culture stage, their propagation rate was 80% after subculture.

Analysis and Verification of Ancient DNA (고대 DNA의 분석과 검증)

  • Jee, Sang-hyun;Seo, Min-seok
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.387-411
    • /
    • 2007
  • The analysis of ancient DNA (aDNA) has become increasingly considerable anthropological, archaeological, biological and public interest. Although this approach is complicated by the natural damage and exogenous contamination of a DNA, archaeologists and biologists have attempted to understand issues such as human evolutionary history, migration and social organization, funeral custom and disease, and even evolutionary phylogeny of extinct animals. Polymerase chain reaction(PCR) is powerful technique that analyzes DNA sequences from a little extract of an ancient specimen. However, deamination and fragmentation are common molecular damages of aDNA and cause enzymatic inhibition in PCR for DNA amplification. Besides, the deamination of a cytosine residue yielded an uracil residue in the ancient template, and results in the misincorporation of an adenine residue in PCR. This promotes a consistent substitution (cytosine thymine, guanine adenine) to original nucleotide sequences. Contamination with exogenous DNA is a major problem in aDNA analysis, and causes oversight as erroneous conclusion. This report represents serious problems that DNA modification and contamination are the main issues in result validation of aDNA analysis. Now, we introduce several criterions suggested to authenticate reliance of aDNA analysis by many researchers in this field.

Recent Research Trends in Thioredoxin Reductase-targeted Anticancer Therapy (Thioredoxin reductase를 표적으로 하는 항암 최신 연구 동향)

  • Hwangbo, Hyun;Lee, Hyesook;Cheong, JaeHun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.63-69
    • /
    • 2022
  • The thioredoxin reductase (TrxR) system is essential for cell survival and function by playing a pivotal role in maintaining homeostasis of cellular redox and regulating signal transduction pathways. The TrxR system comprises thioredoxin (Trx), TrxR, and nicotinamide adenine dinucleotide phosphate. Trx reduced by the catalytic reaction of the TrxR enzyme reduces downstream proteins, resulting in protection against oxidative stress and regulation of cell differentiation, growth, and death. Cancer cells survive by improving their intracellular antioxidant capacity to eliminate excessively generated reactive oxygen species (ROS) due to infinite cell proliferation and a high metabolic rate. Therefore, cancer cells have high dependence and sensitivity to antioxidant systems, suggesting that focusing on TrxR, a representative antioxidant system, is a potential strategy for cancer therapy. Several studies have revealed that TrxR is expressed at high levels in various types of cancers, and research on anticancer activity targeting the TrxR system is increasing. In this review, we discuss the feasibility and value of the TrxR system as a strategy for anticancer activity research by examining the relationship between the function of the intracellular TrxR system and the development and progression of cancer, considering the anticancer activity and mechanism of TrxR inhibitors.

Role of Sirtuin 1 in Depression and Associated Mechanisms (우울증에 관한 Sirtuin 1의 역할과 관련된 기전)

  • Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1120-1127
    • /
    • 2021
  • Depression has a negative impact on social functioning due to its high prevalence and increased suicide rate, and is a disease with a high economic burden. Depression is related to diverse brain-related phenomena, such as neuroinflammation, synaptic dysfunction, and cognitive deficit. As antidepressant drugs used in clinical trials have shown poor therapeutic effects, antidepressant drugs that show rapid efficacy urgently need to be developed. Although studies on various genes, proteins, and signaling pathways related to depression have been conducted, the pathogenesis of depression has not been clearly elucidated. Sirtuin 1 is a nicotinamide-adenine dinucleotide- (NAD+-) dependent histone deacetylase and is involved in cell differentiation, apoptosis, autophagy, and cancer metabolism. Recent genetic studies found that sirtuin 1 is a potential target gene for depression. In addition, preclinical studies reported that sirtuin 1 signaling affects depression-like behavior. In this review, we attempt to present up-to-date knowledge of depression and sirtuin 1. We describe the various roles of sirtuin 1 in the regulation of glial activation, circadian rhythm, neurogenesis, and cognitive function and the effects of its expression on depression. Further, we discuss the effect of sirtuin 1 on the impairment of neural plasticity, one of the key mechanisms of depression, and the associated mechanisms of sirtuin 1.