Browse > Article
http://dx.doi.org/10.1016/j.jgr.2019.08.002

Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling  

Yang, Kyeong-Eun (Biological Disaster Analysis Group, Korea Basic Science Institute)
Jang, Hyun-Jin (Biological Disaster Analysis Group, Korea Basic Science Institute)
Hwang, In-Hu (Neuroscience Research institute, Korea University College of Medicine)
Hong, Eun Mi (Biological Disaster Analysis Group, Korea Basic Science Institute)
Lee, Min-Goo (Department of Physiology, Korea University College of Medicine)
Lee, Soon (Division of Bio-Analytical Science, University of Science and Technology)
Jang, Ik-Soon (Biological Disaster Analysis Group, Korea Basic Science Institute)
Choi, Jong-Soon (Biological Disaster Analysis Group, Korea Basic Science Institute)
Publication Information
Journal of Ginseng Research / v.44, no.2, 2020 , pp. 341-349 More about this Journal
Abstract
Background: The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. Methods: We performed senescence-associated β-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)+/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. Results: Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD+/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD+/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. Conclusion: Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.
Keywords
Akt-mTOR-sirtuin signaling; Ginsenoside Rg3(S); Human dermal fibroblast; Reversal; senescence;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Theurey P, Pizzo P. The aging mitochondria. Genes (Basel) 2018;9:E22.
2 Yang JL, Ha TK, Dhodary B, Kim KH, Park J, Lee CH, Kim YC, Oh WK. Dammarane triterpenes as potential SIRT1 activators from the leaves of Panax ginseng. J Nat Prod 2014;77:1615-23.   DOI
3 Song Z, Liu Y, Hao B, Yu S, Zhang H, Liu D, Zhou B, Wu L, Wang M, Xiong Z, et al. Ginsenoside Rb1 prevents H2O2-induced HUVEC senescence by stimulating sirtuin-1 pathway. PLoS One 2014;9:e112699.   DOI
4 KimMJ, Koo YD, KimM, Lim S, Park YJ, Chung SS, Jang HC, Park KS. Rg3 improves mitochondrial function and the expression of key genes involved in mitochondrial biogenesis in C2C12 myotubes. Diabetes Metab J 2016;40:406-13.   DOI
5 Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000;25:502-8.   DOI
6 Ueno H, Miyoshi H, Ebisui K, Iwamura H. Comparison of the inhibitory action of natural rotenone and its stereosiomers with various NADH-ubiquinone reductases. Eur J Biochem 1994;225:411-7.   DOI
7 Yoo HS, Kim JM, Jo E, Cho CK, Lee SY, Kang HS, Lee MG, Yang PY, Jang IS. Modified Panax ginseng extract regulates autophagy by AMPK signaling in A547 human lung cancer cells. Oncol Rep 2017;37:3287-96.   DOI
8 Kwon HW, Shin JH, Cho HJ, Rhee MH, Park HJ. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser(157)) and dephosphorylation of PI3K and Akt. J Ginseng Res 2016;40:76-85.   DOI
9 Han SY, Kim J, Kim E, Kim SH, Seo DB, Kim JH, Shin SS, Cho JY. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract. J Ginseng Res 2018;42:496-503.   DOI
10 Lopez-Lluch G, Irusta PM, Navas P, de Cabo R. Mitochondrial biogenesis and healthy aging. Exp Gerontol 2008;43:813-9.   DOI
11 van Deursen JM. The role of senescent cells in ageing. Nature 2014;509:439-46.   DOI
12 Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961;25:585-621.   DOI
13 Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev 2016;2016:3565127.
14 Stein GH, Dulic V. Molecular mechanisms for the senescent cell cycle arrest. J Invest Dermatol Symp Proc 1998;3:14-8.   DOI
15 Chen C, Mu XY, Zhou Y, Shun K, Geng S, Liu J, Wang JW, Chen J, Li TY, Wang YP. Ginsenoside Rg1 enhances the resistance of hematopoietic stem/progenitor cells to radiation-induced aging in mice. Acta Pharmacol Sin 2014;35:143-50.   DOI
16 Chen X, Wang M, Xu X, Liu J, Mei B, Fu P, Zhao D, Sun L. Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway. J Ginseng Res 2017;41:411-8.   DOI
17 Lee JO, Kim E, Kim JH, Hong YH, Kim HG, Jeong D, Kim J, Kim SH, Park C, Seo DB, et al. Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract. J Ginseng Res 2018;42:389-99.   DOI
18 McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol 2006;16:R551-60.   DOI
19 Wiley CD, Campisi J. From ancient pathways to aging cells - connecting metabolism and cellular senescence. Cell Metab 2016;23:1013-21.   DOI
20 James EL, Michalek RD, Pitiyage GN, de Castro AM, Vignola KS, Jones J, Mohney RP, Karoly ED, Prime SS, Parkinson EK. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease. J Proteome Res 2015;14:1854-71.   DOI
21 Chen X, Zhang J, Fang Y, Zhao C, Zhu Y. Ginsenoside Rg1 delays tert-butyl hydroperoxide-induced premature senescence in human WI-38 diploid fibroblast cells. J Gerontol A Biol Sci Med Sci 2008;63:253-64.   DOI
22 Blacker TS, Duchen MR. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 2016;100:53-65.   DOI
23 Hu D, Cao S, Zhang G, Xiao Y, Liu S, Shang Y. Florfenicol-induced mitochondrial dysfunction suppresses cell proliferation and autophagy in fibroblasts. Sci Rep 2017;7:13554.   DOI
24 Rato L, Duarte AI, Tomas GD, Santos MS, Moreira PI, Socorro S, Cavaco JE, Alves MG, Oliverira PF. Pre-diabetes alters testicular PGC1-a/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim Biophys Acta 2014;1837:335-44.   DOI
25 Sahin E, DePino RA. Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 2012;13:397-404.   DOI
26 Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and Sirt1. Nature 2005;434:113-8.   DOI
27 Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 2010;40:893-904.   DOI
28 Spadari RC, Cavadas C, de Carvalho AETS, Ortolani D, De Moura AL, Vassalo PF. Role of beta-adrenergic receptors and sirtuin signaling in the heart during aging, heart failure, and adaptation to stress. Cell Mol Neurobiol 2018;38:109-20.   DOI
29 Jang IS, Jo E, Park SJ, Hwang IH, Kang HM, Lee JH, Kwon J, Son J, Kwon HJ, Choi JS. Proteomic analyses reveal that ginsenoside Rg3(S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin. J Ginseng Re 2019. https://doi.org/10.1016/j.jgr.2018.07.008.
30 Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995;92:9363-7.   DOI
31 Fernandez-Moriano C, Gonzalez-Burgos E, Iglesias I, Lozano R, Romez-Serranillos MP. Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neuroptoxicity in an in vitro neuronal model. PLoS One 2017;12:e0182933.   DOI
32 Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 2010;594:57-72.   DOI
33 Quispe-Tintaya W, White RR, Popov VN, Vijg J, Maslov AY. Fast mitochondrial DNA isolation from mammalian cells for nex-generation sequencing. Biotechniques 2013;55:133-6.   DOI
34 Davinelli S, Bertoglio JC, Polimeni A, Scapagnini G. Cytoprotective polyphenols against chronological skin aging and cutaneous photodamage. Curr Pharm Des 2018;24:99-105.   DOI
35 Sarubbo F, Moranta D, Asensio VJ, Miralles A, Esteban S. Effects of resveratrol and other polyphenols on the most common brain age-related diseases. Curr Med Chem 2017;24:4245-66.
36 Oh SJ, Kim K, Lim CJ. Protective properties of ginsenoside Rb1 against UV-B radiation-induced oxidative stress in human dermal keratinocytes. Pharmazie 2015;70:381-7.
37 Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2018;42:123-32.   DOI
38 Guo M, Guo G, Xiao J, Sheng X, Zhang X, Tie Y, Cheng YK, Ji X. Ginsenoside Rg3 stereoisomers differentially inhibit vascular smooth muscle cell proliferation and migration in diabetic athereosclerosis. J Cell Mol Med 2018;22:3202-14.   DOI
39 Park MW, Ha J, Chung SH. 20(S)-ginsenoside Rg3 enhances glucosestimulated insulin secretion and activates AMPK. Biol Pharm Bull 2008;31:748-51.   DOI
40 Wei X, Chen J, Su F, Su X, Hu T, Hu S. Stereospecificity of ginsenoside Rg3 in promotion of the immune response to ovalbumin in mice. Int Immunol 2012;24:465-71.   DOI
41 Lim CJ, Choi WY, Jung HJ. Stereoselective skin anti-photoaging properties of ginsenoside Rg3 in UV-B irradiated keratinocytes. Biol Pharm Bull 2014;37:1583-90.   DOI