• 제목/요약/키워드: Additive Manufacturing

Search Result 461, Processing Time 0.026 seconds

Comparative evaluation of the subtractive and additive manufacturing on the color stability of fixed provisional prosthesis materials (고정성 임시 보철물 재료의 색 안정성에 대한 절삭 및 적층가공법의 비교평가)

  • Lee, Young-Ji;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.2
    • /
    • pp.73-80
    • /
    • 2021
  • Purpose: The purpose of this study is to compare the color stability of provisional restorative materials fabricated by subtractive and additive manufacturing. Materials and Methods: PMMA specimens by subtractive manufacturing and conventional method and bis-acryl specimens by additive manufacturing were fabricated each 20. After immersing specimens in the coffee solution and the wine solution, the color was measured as CIE Lab with a colorimeter weekly for 4 weeks. Color change was calculated and data were analyzed with one-way ANOVA and the Tukey multiple comparisons test (α = 0.05). Results: PMMA provisional prosthetic materials by subtractive manufacturing showed superior color stability compared to bis-acryl provisional prosthetic materials by additive manufacturing (P < 0.05), and showed similar color stability to the PMMA provisional prosthetic materials by conventional method (P > 0.05). Conclusion: It is recommended to fabricate provisional restorations by subtractive manufacturing in areas where esthetics is important, such as anterior teeth, and consideration of the color stability will be required when making provisional prosthetic using additive manufacturing.

A Study on the Additive Manufacturing Process using Copper Wire-Nylon Composite Filaments (구리 와이어-나일론 복합소재 필라멘트를 이용한 적층제조 공정에 관한 연구)

  • Kim, Ye Jin;Kim, Seok;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • Fused deposition modeling (FDM), based on stacking a continuous filament of polymer or composite materials, is well matured and is thus widely used in additive manufacturing technology. To advance FDM-based 3D printing technology, the mechanical properties of additively manufactured composite materials must be improved. In this study, we proposed a novel FDM 3D printing process using metal wire-polymer composites, enabling enhanced mechanical properties. In addition, we developed a new type FDM filament of copper wire wrapped in nylon material for stable 3D printing without thermal damage during the printing process. After FDM printing of the copper wire-nylon composite filament, we conducted a tensile test to investigate the mechanical behavior of the printed composite materials. The experimental results confirmed that the tensile strength of the 3D-printed metal wire-polymer composites was higher than that of the conventional single polymer material. Thus, we expect that the FDM printing process developed in this study may be promising for high-load-bearing applications.

International Development Trend and Technical Issues of Metal Additive Manufacturing (금속 적층제조기술의 국내외 개발동향과 기술적 이슈)

  • Kang, Min-Cheol;Ye, Dea-Hee;Go, Geun-Ho
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.9-16
    • /
    • 2016
  • Metal parts are produced by conventional methods such as casting, forging and cutting, extrusion, etc. However, nowadays, with additive manufacturing (AM), it is possible to directly commercialize by means of stacking of equipment to the 3D drawing and use of high precision tools such as laser source. Thus, drawing of materials is an important aspect in delivering good products. AM deals with production of lighter aircraft parts and few more three-dimensional molds, it wish to manufacture special medical parts and want to steadily expand the new market area. The cost of related equipment and materials are still expensive and difficult to obtain on a mass production. However, the ability to make changes and lead the innovation in the paradigm of traditional manufacturing process is still effective. In this paper, we introduce metal AM and the principles of the related devices, metal powder production process, and their application.

A Study on Manufacturing Standards for Solid Type Fuel Additive (고체 연료첨가제 제조 기준 설정을 위한 연구)

  • Lee, Eui-Sang;Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1292-1297
    • /
    • 2009
  • This study was performed to investigate solubility, dissolution rate and ash content of solid type fuel additive in gasoline and diesel in order to set up manufacturing standards. From the results, the unfiltered impurities were increased when the fuel additive was added on gasoline and diesel. Also, the unfiltered fuel additive was decreased with respect to increasing the pore size of the filter paper. When one gram of the fuel additive was dissolved in one liter of gasoline at room temperature, the best dissolution rate was about 2 hours. But, almost nothing was dissolved in diesel during 72 hours at $20^{\circ}C$ below zero. At the experiment of ash content, the gasoline which the fuel additive was melted in was showing 28 times more ash content than that was not including the fuel additive. Therefore, it seemed that almost all of ash content was caused by the fuel additive.

첨삭가공(Additive Manufacturing)의 세계적 추세

  • Yang, Jeong-Sam
    • CDE review
    • /
    • v.16 no.2
    • /
    • pp.25-29
    • /
    • 2010
  • 첨삭가공(Additive Manufacturing: AM) 기술은 제품 개발에 있어서 기념비적인 변화를 야기하고 있다. 첨삭가공에 대한 이해와 더불어 모델링과 시작품 제작에 첨삭 가공을 잘 활용한다면 제품 제조 과정에 상당한 충격을 줄 수 있다. 많은 조직들은 첨삭가공 기술이 비즈니스, 연구 그리고 교육에 있어서 어떠한 기회를 가져올 것인지에 대해 탐색 중에 있다.

  • PDF

Spheroidization of Enamel Powders by Radio Frequency Plasma Treatment and Application to Additive Manufacturing (RF 플라즈마 처리를 이용한 칠보 유약 분말의 구상화 및 적층 제조 공정 적용)

  • Kim, Ki-Bong;Yang, Dong-Yeol;Kim, Yong-Jin;Choe, Jungho;Kwak, Ji-Na;Jung, Woo-Hyung
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.388-393
    • /
    • 2020
  • The enamel powders used traditionally in Korea are produced by a ball-milling process. Because of their irregular shapes, enamel powders exhibit poor flowability. Therefore, polygonal enamel powders are only used for handmade cloisonné crafts. In order to industrialize or automate the process of cloisonné crafts, it is essential to control the size and shape of the powder. In this study, the flowability of the enamel powders was improved using the spheroidization process, which employs the RF plasma treatment. In addition, a simple grid structure and logo were successfully produced using the additive manufacturing process (powder bed fusion), which utilizes spherical enamel powders. The additive manufacturing technology of spherical enamel powders is expected to be widely used in the field of cloisonné crafting in the future.

Fabrication of Hydrophobic Surfaces with Stereolithography (SLA을 이용한 소수성 표면 제작)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • This paper presents the experimental results of hydrophobic surfaces developed using a stereolithography-based additive-manufacturing technique. The additive manufacturing technique can be used to manufacture objects with complex geometries from computer-aided design data. Several additive manufacturing methods, such as selective laser sintering, fused deposition modeling, stereolithography apparatus (SLA), and inkjet-based system, have been developed. The SLA is a form of three-dimensional printing technology used to create prototypes, patterns, and production parts in successive layers through photochemical processes. Light causes chemical monomers and oligomers to cross-link together to form objects composed of polymers. Moreover, this method is economical for fabricating surfaces with high output resolution and quality. Here, we fabricate various surfaces using different shapes using an SLA. The surfaces with micro-patterns are fabricated for 10 cases, including the biomimetic surface. The fabricated surfaces with various micro-patterns are evaluated for hydrophobicity performance based on the static contact angle. The contact angle is measured three times for each case, and the averaged value is used. The results indicate that the arrangements in a staggered structure have a larger contact angle than those in a line when the same micro-pattern is applied. Moreover, the mimetic surfaces exhibit more hydrophobic characteristics than those of artificial micro-patterns.

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

Mechanical Properties of the Laser-powder Bed Fusion Processed Fe-15Cr-7Ni-3Mn Alloy at Room and Cryogenic Temperatures (L-PBF 공정으로 제조된 Fe-15Cr-7Ni-3Mn 합금의 상온 및 극저온(77K) 기계적 특성)

  • Jun Young Park;Gun Woo No;Jung Gi Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.36-42
    • /
    • 2024
  • Additive manufacturing with 3XX austenitic stainless steels has been widely investigated during a decade due to its high strength, good corrosion resistance, and fair weldability. However, in recently, Ni price drastically increased due to the high demand of secondary battery for electric mobilities. Thus, it is essential to substitute the Ni with Mn for reducing stainless steels price. Meanwhile, the chemical composition changes in stainless steels not only affect to its properties but also change the optimal processing parameters during additive manufacturing. Therefore, it is necessary to optimize the processing parameters of each alloy for obtaining high-quality product using additive manufacturing. After processing optimization, mechanical properties and microstructure of the laser-powder bed fusion processed Fe-15Cr-7Ni-3Mn alloy were investigated in both room (298 K) and cryogenic (77 K) temperatures. Since the temperature reduction affects to the deformation mechanism transition, multi-scale microstructural characterization technique was conducted to reveal the deformation mechanism of each sample.

Study on Corrosion Properties of Additive Manufactured 316L Stainless Steel and Alloy 625 in Seawater

  • Jung, Geun-Su;Park, Yong-Ha;Kim, Dae-Jung;Lim, Chae-Seon
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.258-266
    • /
    • 2019
  • The objective of this study was to evaluate corrosion resistance of additive manufactured 316L stainless steel and alloy 625 powders widely used in corrosion resistance alloys of marine industry in comparison with cast alloys. Directed Energy Deposition (DED) method was used in this work for sample production. DED parameter adjustment was also studied for optimum manufacturing and for minimizing the influence of defects on corrosion property. Additive manufactured alloys showed lower corrosion resistance in seawater compared to cast alloys. The reason for the degradation of anti-corrosion property was speculated to be due to loss of microstructural integrity intrinsic to the additive manufacturing process. Application of heat treatment with various conditions after DED was attempted. The effect of heat treatments was analyzed with a microstructure study. It was found that 316L and alloy 625 produced by the DED process could recover their expected corrosion resistance when heat treated at 1200 ℃.