DOI QR코드

DOI QR Code

Spheroidization of Enamel Powders by Radio Frequency Plasma Treatment and Application to Additive Manufacturing

RF 플라즈마 처리를 이용한 칠보 유약 분말의 구상화 및 적층 제조 공정 적용

  • Kim, Ki-Bong (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Yang, Dong-Yeol (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Yong-Jin (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Choe, Jungho (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Kwak, Ji-Na (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Jung, Woo-Hyung (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS))
  • 김기봉 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 양동열 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 김용진 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 최중호 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 곽지나 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 정우형 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부)
  • Received : 2020.09.08
  • Accepted : 2020.09.28
  • Published : 2020.10.28

Abstract

The enamel powders used traditionally in Korea are produced by a ball-milling process. Because of their irregular shapes, enamel powders exhibit poor flowability. Therefore, polygonal enamel powders are only used for handmade cloisonné crafts. In order to industrialize or automate the process of cloisonné crafts, it is essential to control the size and shape of the powder. In this study, the flowability of the enamel powders was improved using the spheroidization process, which employs the RF plasma treatment. In addition, a simple grid structure and logo were successfully produced using the additive manufacturing process (powder bed fusion), which utilizes spherical enamel powders. The additive manufacturing technology of spherical enamel powders is expected to be widely used in the field of cloisonné crafting in the future.

Keywords

References

  1. Y. S. Noh: Beautiful Color Grilled Cloisonne Art, Mijinsa, Seoul (2000) 49.
  2. W. D. Kingery, H. K. Bowen and D. R. Uhlmann: Introduction to Ceramics, Bwiley, New York (1976) 208.
  3. J. A. Dean: The Analytical Chemistry Handbook McGraw Hill, Inc., New York (1995) 15.
  4. Y. H. Kim: Cloisonne Craft that Creates Mysterious Colors, Hollym, Seoul (1982) 38.
  5. Cloisonne Craft Practice: Human resources development service of Korea, Seoul (2007) 56.
  6. J. C. Yun, J. H. Choe, H. N. Lee, K. B. Kim, S. S. Yang, D.-Y. Yang, Y. J. Kim, C. W. Lee and J. H. Yu: J. Korean Powder Metall., 24 (2017) 195. https://doi.org/10.4150/KPMI.2017.24.3.195
  7. S. E. Brika, M. Letenneur, C. A. Dion and V. Brailovski: Additive Manuf., 31 (2020) 100929. https://doi.org/10.1016/j.addma.2019.100929
  8. S. S. Yang, J. N. Gwak, T. S. Lim, Y. J. Kim and J. Y. Yun: Mater. Trans., 54 (2012) 2313. https://doi.org/10.2320/matertrans.M2013329
  9. R. S. Khmyrov, S. N. Grigoriev, A. A. Okunkova and A. V. Gusarov: Phys. Procedia, 56 (2014) 345. https://doi.org/10.1016/j.phpro.2014.08.117
  10. P. Mellin, O. Lyckfeldt, P. Harlin, H. Brodin and A. Strondl: Metal Powder Report, 72 (2017) 322. https://doi.org/10.1016/j.mprp.2017.06.003
  11. L. Achelis and V Uhlenwinkel: Mater. Sci. Eng., 15 (2008) 477.
  12. C. W. Yang and M. Busse: Adv. Eng. Mater., 6 (2004) 391. https://doi.org/10.1002/adem.200405146
  13. D. Harbec, F. Gitzhofer and A. Tagnit-Hamou: Powder Technol., 214 (2011) 356. https://doi.org/10.1016/j.powtec.2011.08.031
  14. C. Tendero, C. Tixier, P. Tristant and J. McTiernam: Int. J. Powder Metal., 26 (1990) 149.
  15. Z. Karoly and J. Szepvolgi: Chem. Eng. Process., 44 (2005) 221. https://doi.org/10.1016/j.cep.2004.02.015
  16. MPIF Standard 03, Determination of Flow Rate of Freeflowing Metal Powders Using the Hall Apparatus.