Browse > Article
http://dx.doi.org/10.3807/COPP.2022.6.4.381

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System  

Li, Shanggeng (Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China)
Zhang, Shuai (Laser Fusion Research Center, China Academy of Engineering Physics)
Xie, Mengmeng (School of Mechanical Engineering, Jiangnan University)
Li, Jing (Laser Fusion Research Center, China Academy of Engineering Physics)
Li, Ning (Laser Fusion Research Center, China Academy of Engineering Physics)
Yin, Qiang (Laser Fusion Research Center, China Academy of Engineering Physics)
He, Zhibing (Laser Fusion Research Center, China Academy of Engineering Physics)
Zhang, Lin (Laser Fusion Research Center, China Academy of Engineering Physics)
Publication Information
Current Optics and Photonics / v.6, no.4, 2022 , pp. 381-391 More about this Journal
Abstract
Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.
Keywords
Femtosecond phenomena; Multiphoton processes; Photolithograph;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Maruo and S. Kawata, "Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication," J. Microelectromech. Syst. 7, 411-415 (1999).   DOI
2 X. Wang, Z. Wei, C. Z. Baysah, M. Zheng, and J. Xing, "Biomaterial-based microstructures fabricated by two-photon polymerization microfabrication technology," RSC Adv. 9, 34472-34480 (2019).   DOI
3 M. Goppert-Mayer, "Uber elementarakte mit zwei quantensprungen," Ann. Phys. 9, 273-294 (1931).   DOI
4 S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).   DOI
5 D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).   DOI
6 R. Woods, S. Feldbacher, D. Zidar, G. Langer, V. Satzinger, G. Schmid, W. Leeb, and W. Kern, "Development and characterization of optoelectronic circuit boards produced by two-photon polymerization using a polysiloxane containing acrylate functional groups," Appl. Opt. 52, 388-393 (2013).   DOI
7 X. P. Yuan, M. Zhao, X. Guo, M. Zhao, X. J. Guo, Y. Li, Y. Yu, Z. S. Gan, and H. Ruan, "Ultra-high capacity for three-dimensional optical data storage inside transparent fluorescent tape," Opt. Lett. 45, 1535-1538 (2020).   DOI
8 T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, "Two-photon direct laser writing of ultracompact multi-lens objectives," Nat. Photonics 10, 554-560 (2016).   DOI
9 J. Cai and W. Huang, "Two-photon three-dimensional optical storage of a new pyrimidine photobleaching material," Optik 126, 343-346 (2015).   DOI
10 E. E. Morales-Delgado, L. Urio, D. B. Conkey, N. Stasio, D. Psaltis, and C. Moser, "Three-dimensional microfabrication through a multimode optical fiber," Opt. Express 25, 7031-7045 (2017).   DOI
11 M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).   DOI
12 Z.-C. Ma, Y.-L. Zhang, B. Han, X.-Y. Hu, C.-H. Li, Q.-D. Chen, and H.-B. Sun, "Femtosecond laser programmed artificial musculoskeletal systems," Nat. Commun. 11, 4536 (2020).   DOI
13 Y.-L. Zhang, Y. Tian, H. Wang, Z.-C Ma, D.-D. Han, L.-G. Niu, Q.-D. Chen, and H.-B. Sun, "Dual-3D femtosecond laser nanofabrication enables dynamic actuation," ACS Nano 13, 4041-4048 (2019).   DOI
14 B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).   DOI
15 S. Bichler, S. Feldbacher, R. Woods, V. Satzinger, V. Schmidt, G. Jakopic, G. Langer, and W. Kern, "Functional flexible organic-inorganic hybrid polymer for two photon patterning of optical waveguides," Opt. Mater. 34, 772-780 (2012).   DOI
16 B. Xu, Y. Shi, Z. X. Lao, J. C. Ni, G. Q. Li, Y. L. Hu, J. W. Li, J. R. Chu, D. Wu, and K. Sugiokac, "Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging," Lab Chip 18, 442-450 (2018).   DOI
17 Y. Yang, Y. Zhang, Y. Hu, G. Li, C. Zhang, Y. Song, L. Li, C. Ni, N. Dai, Y. Cai, J. Li, D. Wu, and J. Chu, "Femtosecond laser regulated ultrafast growth of mushroom-like architecture for oil repellency and manipulation," Nano Lett. 21, 9301-9309 (2021).   DOI
18 D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, "Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal," Nature Photonics 12, 596-600 (2018).   DOI
19 Y. Hu, H. Yuan, S. Liu, J. Ni, Z. Lao, C. Xin, D. Pan, Y. Zhang, W. Zhu, J. Li, D. Wu, and J. Chu, "Chiral assemblies of laser-printed micropillars directed by asymmetrical capillary force," Adv. Mater. 32, 2002356 (2020).   DOI
20 D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, "Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip," Laser Photonics Rev. 8, 458-467 (2014).   DOI
21 J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, "Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes," Sci. Rep. 8, 14789 (2018).   DOI
22 T. Weiss, R. Schade, T. Laube, A. Berg, G. Hildebrand, R Wyrwa, M. Schnabelrauch, and K. Liefeith, "Two-photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces," Adv. Eng. Mater. 13, 264-273 (2011).
23 J.-F. Xing, M.-L. Zheng, and X.-M. Duan, "Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery," Chem. Soc. Rev. 44, 5031-5039 (2015).   DOI
24 Y.-H. Liu, Y.-Y. Zhao, F. Jin, X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, and X.-M. Duan, "λ/12 Super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning," Nano Lett. 21, 3915-3921 (2021).   DOI
25 X. L. Ren, M. L. Zheng, F. J., Y. Y. Zhao, X. Z. Dong, J. Liu, H. Yu, X. M. Duan, Z. S. Zhao, "Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction," J. Phys. Chem. C 120, 26532-26538 (2016).   DOI
26 K. Moussi, A. Bukhamsin, T. Hidalgo, and J. Kosel, "Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications," Adv. Eng. Mater. 22, 1901358 (2020).   DOI
27 E. Balciunas, S. J. Baldock, N. Dreize, M. Grubliauskaite, S. Coultas, D. L. Rochester, M. Valius, J.G. Hardy, and D. Baltriukiene, "3D printing hybrid organometallic polymer-based biomaterials via laser two-photon polymerization," Polym. Int. 68, 1928-1940 (2019).   DOI
28 G. D. Giustina, A. Gandin, L. Brigo, T. Panciera, S. Giulitti, P. Sgarbossa, D. D'Alessandro, L. Trombi, S. Danti, and G. Brusatin, "Polysaccharide hydrogels for multiscale 3D printing of pullulan scaffolds," Mater. Des. 165, 107566 (2019).   DOI
29 C. Zheng, F. Jin, Y. Zhao, M. Zheng, J. Liu, X. Dong, Z. Xiong, Y. Xia, and X. Duan, "Light-driven micron-scale 3D hydrogel actuator produced by two-photon polymerization microfabrication," Sens. Actuators B: Chem 304, 127345 (2020).   DOI
30 H. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Ye, S. Matsuo, and H. Misawa, "Microcavities in polymeric photonic crystals," Appl. Phys. Lett. 79, 1-3 (2001).   DOI
31 J. Zhu, Q. Zhang, T. Yang, Y. Liu, and R. Liu, "3D printing of multi-scalable structures via high penetration near-infrared photopolymerization," Nat. Commun. 11, 3462 (2020).   DOI
32 X. Liu, H. Gu, M. Wang, X. Du, B. Gao, A. Elbaz, L. Sun, J. Liao, P. Xiao, and Z. Gu, "Liquid superrepellents: 3D printing of bioinspired liquid superrepellent structures," Adv. Mater. 30, 1870157 (2018).   DOI
33 H. Ding, Q. Zhang, H. Gu, X. Liu, L. Sun, M. Gu, and Z. Gu, "Controlled microstructural architectures based on smart fabrication strategies," Adv. Func. Mater. 30, 1901760 (2020).   DOI
34 X. Liu, H. Gu, H. Ding, X. Du, M. Wei, Q. Chen, and Z. Gu, "3D bioinspired microstructures for switchable repellency in both air and liquid," Adv. Sci. 7, 2000878 (2020).   DOI
35 I. A. Paun, C. C. Mustaciosu, M. Mihailescu, B. S. Calin, and A. M. Sandu, "Magnetically-driven 2D cells organization on superparamagnetic micromagnets fabricated by laser direct writing," Sci. Rep. 10, 16418 (2020).   DOI
36 M. Kaynak, P. Dirix, and M. S. Sakar, "Addressable acoustic actuation of 3D printed soft robotic microsystems," Adv. Sci. 7, 2001120 (2020).   DOI
37 C. C. Alcantara, F. C. Landers, S. Kim, C. De Marco, D. Ahmed, B. J. Nelson, and S. Pane, "Mechanically interlocked 3D multi-material micromachines," Nat. Commun. 11, 5957 (2020).   DOI
38 Z. Gan, Y. G, R. A. Evans, and M. Gu, "Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size," Nat. Commun. 4, 2061 (2013).   DOI
39 S. Zhang, S. Li, X. Wan, J. Ma, N. Li, J. Li, and Q. Yin, "Ultrafast, high-resolution and large-size three-dimensional structure manufacturing through high-efficiency two-photon polymerization initiators," Addit. Manuf. 47, 102358 (2021).