• Title/Summary/Keyword: Additive Layer

Search Result 278, Processing Time 0.024 seconds

Microstructures of Powders and Additively Manufactured Objects of an Alloy Tool Steel for Cold-Work Dies (냉간금형용 합금공구강 분말 및 적층조형체의 미세조직)

  • Kang, Jun-Yun;Yun, Jaecheol;Kim, Hoyoung;Kim, Byunghwan;Choe, Jungho;Yang, Sangsun;Yu, Ji-Hun;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.202-209
    • /
    • 2017
  • A cold-work tool steel powder is used to fabricate 3-dimensional objects by selective laser melting using a high-pressure gas atomization process. The spherical powder particles form continuous carbide networks among the austenite matrix and its decomposition products. The carbides comprise Nb-rich MC and Mo-rich $M_2C$. In the SLM process, the process parameters such as the laser power (90 W), layer thickness ($25{\mu}m$), and hatch spacing ($80{\mu}m$) are kept fixed, while the scan speed is changed from 50 mm/s to 4000 mm/s. At a low scan speed of 50 mm/s, spherical cavities develop due to over melting, while they are substantially reduced on increasing the speed to 2000 mm/s. The carbide network spacing decreases with increasing speed. At an excessively high speed of 4000 mm/s, long and irregularly shaped cavities are developed due to incomplete melting. The influence of the scan pattern is examined, for which $1{\times}1 mm^2$ blocks constituting a processing layer are irradiated in a random sequence. This island-type pattern exhibits the same effect as that of a low scan speed. Post processing of an object using hot isostatic pressing leads to a great reduction in the porosity but causes coarsening of the microstructure.

Effect of Cerium Ammonium Nitrate and Alumina Abrasive Particles on Polishing Behavior in Ruthenium Chemical Mechanical Planarization (Ruthenium CMP에서 Cerium Ammonium Nitrate와 알루미나 연마 입자가 연마 거동에 미치는 영향)

  • Lee, Sang-Ho;Lee, Sung-Ho;Kang, Young-Jae;Kim, In-Kwon;Park, Jin-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.803-809
    • /
    • 2005
  • Cerium ammonium nitrate (CAN) and nitric acid was used an etchant and an additive for Ru etching and polishing. pH and Eh values of the CAN and nitric acid added chemical solution satisfied the Ru etching condition. The etch rate increased linearly as the concentration of CAN increased. Nitric acid added solution had the high etch rate. But micro roughness of etched surfaces was not changed before and after etching, The removal rate of Ru film was the highest in $1wt\%$ abrasive added slurry, and not increased despite the concentration of alumina abrasive increased to $5wt\%$. Even Ru film was polished by only CAN solution due to the friction. The highest removal rate of 120nm/min was obtained in 1 M nitric acid and $1wt\%$ alumina abrasive particles added slurry. The lowest micro roughness value was observed in this slurry after polishing. From the XPS analysis of etched Ru surface, oxide layer was founded on the etched Ru surface. Therefore, Ru was polished by chemical etching of CAN solution and oxide layer abrasion by abrasive particles. From the result of removal rate without abrasive particle, the etching of CAN solution is more dominant to the Ru CMP.

Influence of OH- Ion Concentration on the Properties of Eelectrolytic Plasma Oxide Coatings Formed on AZ61A Alloy (전해 플라즈마 공정에 의해 AZ61A 합금에 형성된 산화물층의 특성에 미치는 OH- 이온 농도의 영향)

  • Shin, Seong Hun;Jeong, Young Seung;Rehman, Zeeshan Ur;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.513-520
    • /
    • 2016
  • The effect of NaOH concentration on the properties of electrolytic plasma processing (EPP) coating formed on AZ61A Mg alloy is studied. Various types of EPP were employed on magnesium alloy AZ61A in a silicate bath with different concentrations of NaOH additive. Analysis of the composition and structure of the coating layers was carried out using an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The results showed that the oxide coating layer mainly consisted of MgO and $Mg_2SiO_4$; its porosity and thickness were highly dependent on the NaOH concentration. The Vickers hardness was over 900 HV for all the coatings. The oxide layer with 3 g/l of NaOH concentration exhibited the highest hardness value (1220 HV) and the lowest wear rate. Potentiodynamic testing of the 3 g/l NaOH concentration showed that this concentration had the highest corrosion resistance value of $2.04{\times}10^5{\Omega}cm^2$; however, the corrosion current density value of $5.80{\times}10^{-7}A/cm^2$ was the lowest such value.

Electrodeposition of Copper on Porous Reticular Cathode (II) - Effect of PEG and MPS on throwing Power- (다공성 그물구조 음극을 이용한 구리 전착에 관한 연구 (II) -유기첨가제 PEG, MPS의 영향 -)

  • Lee Kwan Hyi;Lee Hwa Young;Jeung Won Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.41-46
    • /
    • 2001
  • The effect of organic additives such as PEG ind MPS on throwing power have been studied in the fabrication of porous reticular metal by electrodeposition using the mixture of cupric sulfate and sulfuric acid as electrolyte. Both the polarization test and the electrodeposition on the stacked electrodes, mean pore diameter of which was $250{\mu}m$, were performed to illustrate the behavior of throwing power quantitatively. As far as PEG was concerned, it lowered throwing power of electrodeposition on the porous electrode used in this work while the addition of MPS up to 500 ppm in electrolyte enhanced throwing power monotonously. When both MPS and PEG were added in electrolyte, the effect of MPS on throwing power was superior to that of PEG. However, the excess addition of MPS was found to cause the defect in mechanical strength of deposit layer. From the result of SEM observation, it could be concluded that less than 50 ppm of MPS in electrolyte was appropriate to avoid the breakage of deposit layer.

Performance Characteristics of Lead Acid Battery with the Contents of Sodium Perborate Tetrahydrate (SPT) in Positive Plate Active Material (과붕산나트륨 양극 활물질 첨가에 따른 차량용 납산배터리 성능 특성)

  • Lim, Tae Seop;Kim, Sung Jun;Kim, Sang Dong;Yang, SeungCheol;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.426-434
    • /
    • 2020
  • The performance characteristics of a lead acid battery are investigated with the content of Sodium Perborate Tetrahydrate (SPT, NaBO3·4H2O) in a positive plate active material. SPT, which reacts with water to form hydrogen peroxide, is applied as an additive in the positive plate active material to increase adhesion between the substrate (positive plate) and the active material; this phenomenon is caused by a chemical reaction on the surface of substrate. A positive plate with the increasing content of SPT is prepared to compare its properties. It is confirmed that the oxide layer increases at the interface between the substrate and the active material with increasing content of SPT; this is proven to be an oxide layer through EDS analysis. Battery performance is confirmed: when SPT content is 2.0 wt%, the charging acceptance and high rate discharge properties are improved. In addition, the lifetime performance according to the Standard of Battery Association of Japan (SBA) S0101 test is improved with increasing content of SPT.

Optimal Methodology of a Composite Leaf Spring with a Multipurpose Small Commercial Vans (다목적 소형 승합차 복합재 판 스프링의 적층 최적화 기법)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.243-250
    • /
    • 2018
  • In this paper, design technique using genetic algorithms(GA) for design optimization of composite leaf springs is presented here. After the initial design has been validated by the car plate spring as a finite element model, the genetic algorithm suggests the process of optimizing the number of layers of composite materials and their angles. Through optimization process, the weight reduction process of leaf springs and the number of repetitions are compared to the existing algorithm results. The safety margin is calculated by organizing a finite element model to verify the integrity of the structure by applying an additive sequence optimized through the genetic algorithm to the structure. When GA is applied, layer thickness and layer angle of complex leaf springs have been obtained, which contributes to the achievement of minimum weight with appropriate strength and stiffness. A reduction of 65.6% original weight is reached when a leaf steel spring is replaced with a leaf composite spring under identical requirement of design parameters and optimization.

Microstructure and Electrical Properties of $Pr_6$$O_{11}$-Based ZnO Varistors Doped with $Nd_24$O_3$ ($Nd_24$O_3$가 첨가된 $Pr_6$$O_{11}$계 ZnO 바리스터의 미세구조 및 전기적 성질)

  • 남춘우;박춘현;윤한수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.206-213
    • /
    • 2000
  • The microstructure and electrical properties of Pr$_{6}$/O sub 11/-Based ZnO varistors with Nd$_2$O$_3$ was doped in the range of 0.0 to 2.0 mol% were investigated. Most of the added Nd$_2$O$_3$were segregated at the nodal points and grain boundaries and were found to form the Nd-rich phase. In addition the bulk intergranular layer at the grain boundaries and nodal points was consisted of Nd-rich phase and Pr-rich phase. the average grain size was decreased in the range of 7.8 to 5.6${\mu}{\textrm}{m}$ with increasing Nd$_{2}$/O sub 3/ additive content. The nonlinearity of ZnO varistors sintered at 130$0^{\circ}C$ was much more excellent than that at 135$0^{\circ}C$ ZnO varistors doped with 1.0mol% Nd$_{2}$/O sub 3/ exhibited the best nonlinearity. which is 65.2 in the nonlinear exponent and 4.5$\mu$A in the leakage current. Consequently. it is estimated that Pr$_{6}$/O sub 11/ -based ZnO varistors doped with 1.0 mol% Nd$_{2}$/O sub 3/ are to be sufficiently used as basic composition to fabricate good varistors in the future.ure.

  • PDF

The Influence of Additives on the Mechanical Properties of Electrodeposited Copper Foils (첨가제에 의한 구리 박막의 기계적 특성 변화)

  • Woo, Tae-Gyu;Park, Il-Song;Jung, Kwang-Hee;Son, Kyu-Song;Song, Ram;Lee, Man-Hyung;Hwang, Young-Kyu;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • The objective of this study is to investigate the effect of additives on the mechanical and electrical characteristics of electrodeposited copper foils. Additives A(leveler) and B(brightener) were used in this study and Cl ions were used as an accelerator. In case of using these additives A and B, it showed a disadvantage that decreased the elongation of electrodeposited layer due to decreased grain sizes and increased tensile strength. On the other hand, the Cl ions decreased the specific resistance of the copper layer and increased elongation owing to increasing grain sizes. The highest elongation and lowest resistivity were measured in the group added only Cl ions, whose values were 21.9% and $3.11{\mu}\Omega$-cm, respectively.

A study on corrosion resistance and surface properties of AZ31 alloy according to Ca-GP addition during PEO treatment (PEO 처리시 Ca-GP첨가에 따른 AZ31합금의 내식성 및 표면특성에 관한 연구)

  • Lee, Jun-Su;Park, Je-Shin;Park, Il-Song
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.238-247
    • /
    • 2021
  • PEO (plasma electrolytic oxidation) was applied to modify the surface of AZ31 magnesium alloy in this study. The mixed solution of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) was used as the electrolyte, and 0 - 0.05 g/L of Ca-GP (Glycerol Phosphate Calcium salt) was added in the electrolyte as an additive. PEO treatment was conducted at a current density of 30mA/cm2 for 5 minutes using a DC power supply. The surface properties were identified by SEM, XRD and surface roughness analyses, and the corrosion resistance was evaluated by potentiodynamic polarization and immersion tests. In addition, the biocompatibility was evaluated by immersion test in SBF solution. As the concentration of Ca-GP was increased, the surface morphology was denser and more uniform, and the amount of Ca and the thickness of oxide layer increased. Only Mg peak was observed in XRD analysis due to very thin oxide layer. The corrosion resistance of PEO-treated samples increased with the concentration of Ca-GP in comparision with the untreated sample. In particular, the highest corrosion resistance was identified at the group of 0.04g Ca-GP through potentiodynamic polarization and immersion tests in saline solution (0.9 wt.%NaCl). During the immersion in saline solution, pH rapidly increased at the beginning of immersion period due to rapid corrosion, and then increase rate of pH decreased. However, the pH value in the SBF temporarily increased from 7.4 to 8.5 during the day, then decreased due to the inhibition of corrosion with HA(hydroxyapatite) formation.

Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting (선택적 레이저 용융법으로 제조한 316L 스테인리스강의 기계적 이방성에 미치는 기공의 영향)

  • Park, Jeong Min;Jeon, Jin Myoung;Kim, Jung Gi;Seong, Yujin;Park, Sun Hong;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.475-481
    • /
    • 2018
  • Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.