Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.8.426

Performance Characteristics of Lead Acid Battery with the Contents of Sodium Perborate Tetrahydrate (SPT) in Positive Plate Active Material  

Lim, Tae Seop (Sebang Global battery Co., Ltd.)
Kim, Sung Jun (Sebang Global battery Co., Ltd.)
Kim, Sang Dong (Sebang Global battery Co., Ltd.)
Yang, SeungCheol (School of Nano & Advanced Materials Eng., Changwon National Univ.)
Jung, Yeon-Gil (School of Nano & Advanced Materials Eng., Changwon National Univ.)
Publication Information
Korean Journal of Materials Research / v.30, no.8, 2020 , pp. 426-434 More about this Journal
Abstract
The performance characteristics of a lead acid battery are investigated with the content of Sodium Perborate Tetrahydrate (SPT, NaBO3·4H2O) in a positive plate active material. SPT, which reacts with water to form hydrogen peroxide, is applied as an additive in the positive plate active material to increase adhesion between the substrate (positive plate) and the active material; this phenomenon is caused by a chemical reaction on the surface of substrate. A positive plate with the increasing content of SPT is prepared to compare its properties. It is confirmed that the oxide layer increases at the interface between the substrate and the active material with increasing content of SPT; this is proven to be an oxide layer through EDS analysis. Battery performance is confirmed: when SPT content is 2.0 wt%, the charging acceptance and high rate discharge properties are improved. In addition, the lifetime performance according to the Standard of Battery Association of Japan (SBA) S0101 test is improved with increasing content of SPT.
Keywords
lead-acid battery; SPT; positive plate; active material; electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kawajiri, M. Kobayashi and K. Sakamoto, J. Cleaner Prod., 253, 119805 (2020).   DOI
2 C. Pillot, J. Catal., EVS27 International Battery, Hybrid and Fuel cell Electric Vehicle Symposium (2013).
3 J. Yu, S. Kim, C. Gwon and J. Bang, US Patent Application Publication, US2012/0133500 A1 (2012).
4 K. Sawai, T. Ohmae, H. Suwaki, M. Shiomi and S. Osumi, J. Power Sources, 174, 54 (2007).   DOI
5 D. Pavlov, V. Naidenov, Y. Milusheva, S. Vassilev, T. Shibahara and M. Tozuka, J. Energy Storage, 17, 336 (2018).   DOI
6 S. Zhang, H. Zhang, J. Cheng, W. Zhang, G. Cao and H. Zhao, J. Power Sources, 334, 31 (2016).   DOI
7 E. Ebner, D. Burow, A. Borger, M. Wark, P. Atanassova and J. Valenciano, J. Power Sources, 239, 483 (2013).   DOI
8 M. Fernandez, J. Valenciano, F. Trinidad and N. Munoz, J. Power Sources, 195, 4458 (2010).   DOI
9 N. Sugumaran, P. Everill, S. W. Swogger and D. P. Dubey J. Power Sources, 279, 281 (2015).   DOI
10 A. Moncada, S. Piazza, C. Sunseri and R. Inguanta, J. Power Sources, 275, 181 (2015).   DOI
11 M. Foudia, M. Matrakova and L. Zerroual, J. Power Sources, 279, 146 (2015).   DOI
12 M. A. Deyab, J. Power Sources, 390, 176 (2018).   DOI
13 R. J. Ball, R. Kurian R. Evans and R. Stevens, J. Power Sources, 111, 23 (2002).   DOI
14 I. Kurisawa, M. Shiomi, S. Ohsumi, M. Iwata and M. Tsubota, J. Power Sources, 95, 125 (2001).   DOI
15 R. D. Prengaman, J. Power Sources, 95, 224 (2001).   DOI
16 G. Y. Yuksel, P. Sayan, S. Titiz and A. N. Bulutcu, J. Cryst. Growth, 160, 370 (1996).   DOI
17 D. Pavlov, M. Dimitrov, T. Rogachev and L. Bogdanova, J. Power Sources, 114, 137 (2003).   DOI
18 J. P. Mckinley, M. K. Dlaska and R. Baston, J. Power Sources, 107, 180 (2002).   DOI