• Title/Summary/Keyword: Additional element

Search Result 687, Processing Time 0.03 seconds

Design of Miniaturized Directional Coupler Utilizing Lumped Element (집중소자를 이용한 소형화된 방향성 결합기 설계)

  • Yong, Kwang-Seong;Yook, Jong-Gwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.251-255
    • /
    • 2003
  • In this paper, a miniaturized directional coupler utilizing lumped element is proposed as a interdigital capacitor. The traditional miniaturization technique of transmission line realized a utilizing MIM(Metal-Insulator-Metal) capacitor on CPW(Coplanar Waveguide). However, we present a simplified design procedure without additional manufacturing process utilizing interdigital capacitor on microstrip with ease of design. The similar characteristics between the conventional directional coupler with ${\lambda}/4$ transmission line and the miniaturized directional coupler with ${\lambda}/8$ transmission line are validated through simulation and measurement results. Miniaturization rate of total size is about 25% while coupled line is about 60%. As a result, this proposed directional coupler can reduce the size of mobile communication system at 2 GHz.

  • PDF

Optimum Design of a Shield Plate to minimize Extremely-Law-Frequency Magnetic Fields produced by Bus Bars (분전반 모선에 의해 발생되는 극저주파 자기장 저감을 위한 차폐판 최적 설계)

  • Jeung, Gi-Woo;Choi, Nak-Sun;Kim, Dong-Hun;Jang, Nak-Won;Lee, Dong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • This paper deals with the optimal design of a shield plate in order to minimize Extremely-Low-Frequency(ELF) magnetic fields generated from three-phase bus bars. Combining an evolutionary strategy with a 3D finite element analysis tool, the main dimensions of the shield plate are sought out. The optimization procedure consists of two separated design stages to take into account all foreseen structures of the plate. In the first stage, the basic dimensions of the plate are optimized including the distance between the plate and the bus bars. Then the usefulness of the additional structures such as a slit and fillet is investigated in the second stage. Finally the optimum design of the shield plate is suggested from the viewpoint of the shielding effectiveness and manufacturing cost.

STUDY ON THE DEFORMATION OF DROPLETS IN A TWO-DIMENSIONAL CHANNEL FLOW (2차원 채널유동에서의 액적 변형에 대한 수치해석적 연구)

  • Jung, S.R.;Cho, M.H.;Choi, H.G.;Yoo, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.6-9
    • /
    • 2011
  • In this study, the two-phase incompressible flow in two-dimensional channel considering the effect of surface tension is simulated using an improved level-set method. Quadratic element is used for solving the continuity and Navier-Stokes equations to avoid using an additional pressure equation, and Crank-Nicholson scheme and linear element are used for solving the advection equation of the level set function. Direct approach method using geometric information is implemented instead of the hyperbolic-type partial differential equation for the reinitializing the level set function. The benchmark test case considers various arrays of defomable droplets under different flow conditions in straight channel. The deformation and migration of the droplets are computed and the results are compared very well with the existing studies.

  • PDF

Numerical analysis of free surface flow s using least square/level-set method (최소자승법과 Level-set 방법을 이 용한 자유표면 유동의 수치해석)

  • Choi, Hyoung-G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.565-567
    • /
    • 2008
  • In the present study, a least square/level set based two-phase flow code has been developed using finite element discretization, which can be utilized for the analysis of a free surface flow problem in a complex geometry. Since the finite element method is employed for the spatial discretization of governing equations, an unstructured mesh can be naturally adopted for the level set simulation of a bubble-in-liquid flow without an additional load for the code development except that solution methods of the hyperbolic type redistancing and advection equations of the level set function should be devised in order to give a bounded solution on the unstructured mesh. For the discretization of hyperbolic type redistancing and advection equations, least square method is adopted. From the numerical experiments of the present study, it is shown that the proposed method is both robust and accurate.

  • PDF

An Improved Finite Element Method by Adding Arbitrary Nodes in a Domain (임의의 절점 추가에 의한 개선 유한요소법)

  • Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1626-1633
    • /
    • 2006
  • In the present paper, in the context of the meshless interpolation of a moving least squares (MLS) type, a novel method which uses primary and secondary nodes in the domain and on the global boundary is introduced, in order to improve the accuracy of solution. The secondary nodes can be placed at any location where one needs to obtain a better resolution. The support domains for the shape functions in the MLS approximation are defined from the primary nodes, and the secondary nodes use the same support domains. The shape functions based on the MLS approximation, in an integration domain, have a single type of a rational function, which reduces the difficulty of numerical integration to evaluate the weak form. The present method is very useful in an adaptive calculation, because the secondary nodes can be easily added and moved without an additional mesh. Several numerical examples are presented to illustrate the effectiveness of the present method.

Study of Shape Optimization for Automobile Lock-up Clutch Piston Design with B-spline Curve Fitting and Simplex Method (B-spline Curve Fitting 과 심플렉스법을 적용한 자동차 록업클러치 피스톤 형상최적설계에 관한 연구)

  • Kim, Choel;Hyun, Seok-Jeong;Son, Jong-Ho;Shin, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1334-1339
    • /
    • 2003
  • An efficient method is developed for the shape optimization of 2-D structures. The sequential linear programming is used for minimization problems. Selected set of master nodes are employed as design variables and assigned to move towards the normal direction. After adapting the nodes on the design boundary, the B-spline curves and mesh smoothing schemes are used to maintain the finite element in good quality. Finally, a numerical implementation of optimum design of an automobile torque converter piston subjected to pressure and centrifugal loads is presented. The results shows additional weight up to 13% may be saved after the shape optimization.

  • PDF

The Study for Reduction of Stress Concentration at the Stepped Shaft According to Two Types of External Force (하중 종류에 따른 다단축의 응력 집중 완화에 대한 연구)

  • Park, I.S.;Shim, J.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • In this study, Finite Element Analysis have been adopted to analyze reducing stress effect and used to induce the sensitivity of design parameter on various techniques which was used for reducing stress. And so it can be utilized as a data to design on similar model. The effect of reducing stress with respect to change of relief groove radius can be increased by 27.3~18.2 % more than radius of fillet. And if a shoulder fillet radius is larger, additional reducing stress by relief groove radius is not obtained. And there was only little effect on reducing stress by changing the center point of groove radius along horizontal direction. In the case that undercut radius is 1.5mm, Max. Equivalent stress is reduced by 5.71% under bending force and 11.11% under torsion. The best effect of reducing stress at undercut model was yielded when the undercut radius is a forth of difference of stepped shaft radius.

A comparison of the transmission losses of two-dimensional dissipative silencers predicted by analytical method and BEM (이론적 해 및 경계요소법에 의한 2차원 흡음형 소음기의 전달 손실치 예측 비교)

  • 김회전;이정권;정지훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1001-1004
    • /
    • 2002
  • Accurate prediction of the transmission loss of dissipative silencers has been considered difficult due to the ambiguity and complexity in the physical properties of sound absorbing materials. Additional difficulty lies in the fact that the analytical calculation of the propagation constant is unknown yet. In this paper. as a first step toward obtaining the Propagation constant and thus predicting the transmission loss, an approximation equation stemming from the wave analysis in the lined interior has been derived. Such an analytical solution and numerical solution using the boundary element method are compared for a two-dimensional simple dissipative silencer under the assumption of the locally reacting sound absorbent.

  • PDF

Design evaluation of wind turbine pitch/yaw bearings by contact stress analysis (응력해석을 통한 풍력 발전기용 피치/요 베어링 설계 검증)

  • Ka, Jaewon;Kim, JaeDong;Nam, Yongyun;Rim, Chaewhan;Park, Youngjun;Bang, Jesung;Lee, Youngshin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Wind turbine pitch/yaw bearings are relatively big and have different operating conditions like very heavy load to support compared with widely used industrial bearings. Once pitch/yaw bearings failed, according to their special surroundings, serious damages like higher repair costs and additional costs by stopped electricity generation are occur. Therefore, pitch/yaw bearings must be designed to have enough strength and fatigue life under actual operating conditions. In this study, with finite element analysis, it was investigated that stress distribution between rolling elements and raceway and comparatively analyzed using widely used guideline (NREL DG03). Design parameters of wind turbine pitch/yaw bearings are also analyzed, and it could be used as reference for the large bearing design field.

  • PDF

PWSCC Growth Assessment Model Considering Stress Triaxiality Factor for Primary Alloy 600 Components

  • Kim, Jong-Sung;Kim, Ji-Soo;Jeon, Jun-Young;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1036-1046
    • /
    • 2016
  • We propose a primary water stress corrosion cracking (PWSCC) initiation model of Alloy 600 that considers the stress triaxiality factor to apply to finite element analysis. We investigated the correlation between stress triaxiality effects and PWSCC growth behavior in cold-worked Alloy 600 stream generator tubes, and identified an additional stress triaxiality factor that can be added to Garud's PWSCC initiation model. By applying the proposed PWSCC initiation model considering the stress triaxiality factor, PWSCC growth simulations based on the macroscopic phenomenological damage mechanics approach were carried out on the PWSCC growth tests of various cold-worked Alloy 600 steam generator tubes and compact tension specimens. As a result, PWSCC growth behavior results from the finite element prediction are in good agreement with the experimental results.