• Title/Summary/Keyword: Adaptive satellite communication

Search Result 67, Processing Time 0.026 seconds

A Study of Anti-Jamming Performance using A-NED(Adaptive NED) Algorithm of SFH(Slow Frequency Hopping) Satellite Communication Systems in PBNJ (부분 대역 재밍 환경에서 SFH(Slow Frequency Hopping) 위성 통신 방식을 사용하는 A-NED(Adaptive NED) 알고리즘 항재밍 성능 분석)

  • Kim, Sung-Ho;Shin, Kwan-Ho;Kim, Hee-Jung;Kim, Young-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.30-35
    • /
    • 2010
  • As of today, Frequency Hopping techniques are widely used for over-channel interference and anti-jamming communication systems. In this paper, analysis the performance of robustness on the focus of some general jamming channel. In FH/SS systems, usually SFH(Slow Frequency Hopping) and FFH(Fast Frequency Hopping) are took up on many special communication systems, the SFH, FFH are also combined with a channel diversity algorithm likes NED(Normalized Envelop Detection), EGC(Equal Gain Combines) and Clipped Combines to overcome jammer's attack. This paper propose Adaptive-NED and shows A-NED will be worked well than the others in the some general jamming environments.

Performance Simulation of ACM for Compensating Rain Attenuation in Satellite Link (위성시스템 강우 감쇠 보상을 위한 ACM 성능 시뮬레이션)

  • Zhang, Meixiang;Kim, Sooyoung;Pack, Jeong-Ki;Kim, Ihn-Kyum
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.8-15
    • /
    • 2012
  • Adaptive transmission technique is an effective means to counter-measure rain attenation that is one of the most significant factors degrading link quality in satellite communication systems. This paper introduces a simulator for adaptive transmission technique to compensate rain attenuation. In the simulator, a dynamic rain attenuation model is loaded, which was developed to synthesize Korean rain attenuation dynamics at a frequency band of Ka. It is a Markov chain model with rain attenuation parameters extracted from the rain attenuation data measured per second. In addition, various transmission schemes are embedded so that a user defined simulations can be performed. This paper demonstrates simulation results of adaptive schemes in comprison with fixed schemes, and show the efficiency of the adaptive schemes to compensate the rain attenuation.

Efficient Channel Estimation and Packet Scheduling Scheme for DVB-S2 ACM Systems (DVB-S2 ACM 시스템을 위한 효율적인 채널 예측 및 패킷 스케줄링 기법)

  • Kang, Dong-Bae;Park, Man-Kyu;Chang, Dae-Ig;Oh, Deock-Gil
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.65-74
    • /
    • 2012
  • The QoS guarantee for the forward link in satellite communication networks is very important because there are a variety of packets with multiplexing. Especially, the packets are processed depending on the available bandwidth in satellite network changing the wireless channel state in accordance with weather condition. The DVB-S2 increases the transmission efficiency by applying the adaptive coding and modulation (ACM) techniques as a countermeasure of rain attenuations. However, the channel estimation algorithm is required to support the ACM techniques that select the MODCOD values depending on the feedback data transmitted by RCSTs(Return Channel via Satellite Terminal) because satellite communication networks have a long propagation delay. In this paper, we proposed the channel estimation algorithm using rain attenuation values and reference data and the packet scheduling scheme to support the QoS and fairness. As a result of performance evaluation, we showed that proposed algorithm exactly predicts the channel conditions and supports bandwidth fairness to the individual RCST and guarantees QoS for user traffics.

An Adaptive Resource Allocation Scheme in Cognitive Radio Network Assisted Satellite (무선 인지 네트워크에서 위성을 이용한 적응적인 자원 할당 기법)

  • Lee, Seon-Yeong;Sohn, Sung-Hwan;Jang, Sung-Jin;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.5-11
    • /
    • 2009
  • In this paper, we propose our design of adaptive resource allocation in the cognitive radio network assisted by satellite to improve the performance of Cognitive Radio user. Most of today’s telecommunication network operates in a fixed, licensed frequency band using a specific spectrum access network. However, the spectrum is not always used all the time, all the band. It causes the inefficiency in the spectrum usage. Thus, cognitive radio network is proposed to solve these spectrum inefficiency problems. The cognitive radio users (secondary users) are coexistent with primary users (PUs) who are licensed. That cognitive radio network is considered as lower priority comparing with primary user. So, the operation of the cognitive radio network is limited to interference constraints. Especially, when the number of secondary users increases, CCI among SUs will increase as well as interference to PU. That motivates our objective to improve the performance even if cognitive radio users increase. To solve this problem, we suggest an adaptive resource allocation scheme to improve the performance of cognitive radio network assisted by satellite. Through this algorithm, we can improve the cognitive radio network performance. And the simulation results confirm the effectiveness of our proposed algorithm.

  • PDF

Adaptive Controllers for Feedback Linearizable Systems using Diffeomorphism

  • Park, H.L.;Lee, S.H.;J.T. Lime
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.443-443
    • /
    • 2000
  • A systematic scheme is developed fer the design of new adaptive feedback linearizing controllers for nonlinear systems. The developed adaptation law estimates the uncertain time-varying parameters using the structure of diffeomorphisrn. Our scheme is applicable to a class of nonlinear systems which violates the restrictive parametric-pure-feedback condition [4]-[6].

  • PDF

Adaptive Control Technique for the Random Access Channel in DVB-RCS2 based Next Generation Military Satellite Networks (DVB-RCS2 기반 차세대 군 위성 네트워크 랜덤 액세스 채널 적응형 제어 기법)

  • Lee, WonKyun;Jang, Dae-Hee;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.99-108
    • /
    • 2020
  • In this paper, we analyze the most suitable RA method among PAMA, DAMA, and RA classified by the multiple access method of satellite communication in the rapidly changing traffic environment according to the emergency and tactical situation. It suggests an alternative to improve the limit of output degradation. Based on the CRDSA protocol selected as the standard of DVB-RCS2 among the current satellite communication methods, CRDSA2R (Contention) maintains an optimal RA channel environment by checking the limitations in an environment where packet volume is rapidly increasing and observing channel load and channel conditions. We propose a Resolution Diversity Slotted ALOHA with Adaptive Random Access.

Analysis of Tip/Tilt Compensation of Beam Wandering for Space Laser Communication

  • Seok-Min Song;Hyung-Chul Lim;Mansoo Choi;Yu Yi
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.237-245
    • /
    • 2023
  • Laser communication has been considered as a novel method for earth observation satellites with generation of high data volume. It offers faster data transmission speeds compared to conventional radio frequency (RF) communication due to the short wavelength and narrow beam divergence. However, laser beams are refracted due to atmospheric turbulence between the ground and the satellite. Refracted laser beams, upon reaching the receiver, result in angle-of-arrival (AoA) fluctuation, inducing image dancing and wavefront distortion. These phenomena hinder signal acquisition and lead to signal loss in the course of laser communication. So, precise alignment between the transmitter and receiver is essential to guarantee effective and reliable laser communication, which is achieved by pointing, acquisition, and tracking (PAT) system. In this study, we simulate the effectiveness of tip/tilt compensation for more efficient laser communication in the satellite-ground downlink. By compensating for low-order terms using tip/tilt mirror, we verify the alleviation of AoA fluctuations under both weak and strong atmospheric turbulence conditions. And the performance of tip/tilt correction is analyzed in terms of the AoA fluctuation and collected power on the detector.

Adaptive Beamwidth Control Technique for Low-orbit Satellites for QoS Performance improvement based on Next Generation Military Mobile Satellite Networks (차세대 군 모바일 위성 네트워크 QoS 성능 향상을 위한 저궤도 위성 빔폭 적응적 제어 기법)

  • Jang, Dae-Hee;Hwang, Yoon-Ha;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.1-12
    • /
    • 2020
  • Low-Orbit satellite mobile networks can provide services through miniaturized terminals with low transmission power, which can be used as reliable means of communication in the national public disaster network and defense sector. However, the high traffic environment in the emergency preparedness situation increases the new call blocking probability and the handover failure probability of the satellite network, and the increase of the handover failure probability affects the QoS because low orbit satellites move in orbit at a very high speed. Among the channel allocation methods of satellite communication, the FCA shows relatively better performance in a high traffic environment than DCA and is suitable for emergency preparedness situations, but in order to optimize QoS when traffic increases, the new call blocking and the handover failure must be minimized. In this paper, we propose LEO-DBC (LEO satellite dynamic beam width control) technique, which improves QoS by adaptive adjustment of beam width of low-orbit satellites and call time of terminals by improving FCA-QH method. Through the LEO-DBC technique, it is expected that the QoS of the mobile satellite communication network can be optimally maintained in high traffic environments in emergency preparedness situations.