• Title/Summary/Keyword: Adaptive sampling

Search Result 259, Processing Time 0.032 seconds

Equivalent Circuit Modeling applying Adaptive Frequency Sampling (Adaptive Frequency Sampling 을 이용한 등가회로 모델링)

  • Paek, Hyun;Kim, Koon-Tae;Kahng, Sung-Tek;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.281-284
    • /
    • 2009
  • In this paper, we propose a method that applies Adaptive Frequency Sampling(AFS) technique to the equivalent circuit model for RF passive components. Thes days wireless communication system is getting smaller and smaller. So EMI/EMC is an issue in RF. We can solve PI(Power Integrity)/SI(Signal Integrity) that one of EMI/EMC problem apply IFFT for 3D EM simulation multiple with input signal. That is time comuming task. Therefore equivalent circuit model using RF passive component is important. AFS schemes are implemented to obtain the rational functions. S parameters of the equivalent circuit moldel is compared to those of EM simulation in case of the microstrip line structure.

  • PDF

Design of an adaptive tracking algorithm for a phased array radar (위상배열 레이다를 위한 적응 추적 알고리즘의 설계)

  • Son, Keon;Hong, Sun-Mog
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.541-547
    • /
    • 1992
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three-dimensional adaptive tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track update illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver detector. A detailed simulation is conducted to test the validity of our tracking algorithm for encounter geometries under various conditions of maneuver.

  • PDF

Adaptive kernel method for evaluating structural system reliability

  • Wang, G.S.;Ang, A.H.S.;Lee, J.C.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.115-126
    • /
    • 1997
  • Importance sampling methods have been developed with the aim of reducing the computational costs inherent in Monte Carlo methods. This study proposes a new algorithm called the adaptive kernel method which combines and modifies some of the concepts from adaptive sampling and the simple kernel method to evaluate the structural reliability of time variant problems. The essence of the resulting algorithm is to select an appropriate starting point from which the importance sampling density can be generated efficiently. Numerical results show that the method is unbiased and substantially increases the efficiency over other methods.

Bayesian Estimation of k-Population Weibull Distribution Under Ordered Scale Parameters (순서를 갖는 척도모수들의 사전정보 하에 k-모집단 와이블분포의 베이지안 모수추정)

  • 손영숙;김성욱
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.273-282
    • /
    • 2003
  • The problem of estimating the parameters of k-population Weibull distributions is discussed under the prior of ordered scale parameters. Parameters are estimated by the Gibbs sampling method. Since the conditional posterior distribution of the shape parameter in the Gibbs sampler is not log-concave, the shape parameter is generated by the adaptive rejection sampling. Finally, we applied this estimation methodology to the data discussed in Nelson (1970).

Non-parametric Adaptive Importance Sampling for Fast Simulation Technique (속산 시뮬레이션을 위한 적응형 비모수 중요 샘플링 기법)

  • 김윤배
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.77-89
    • /
    • 1999
  • Simulating rare events, such as probability of cell loss in ATM networks, machine failure in highly reliable systems, requires huge simulation efforts due to the low chance of occurrence. Importance Sampling (IS) has been applied to accelerate the occurrence of rare events. However, it has a drawback of effective biasing scheme to make the estimator of IS unbiased. Adaptive Importance Sampling (AIS) employs an estimated sampling distribution of IS to the system of interest during the course of simulation. We propose Nonparametric Adaptive Importance Sampling (NAIS) technique which is nonparametrical version of AIS. We test NAIS to estimate a probability of rare event in M/M/1 queueing model. Comparing with classical Monte Carlo simulation, the computational efficiency and variance reductions gained via NAIS are substantial. A possible extension of NAIS regarding with random number generation is also discussed.

  • PDF

Bayesian Estimation of the Nakagami-m Fading Parameter

  • Son, Young-Sook;Oh, Mi-Ra
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.345-353
    • /
    • 2007
  • A Bayesian estimation of the Nakagami-m fading parameter is developed. Bayesian estimation is performed by Gibbs sampling, including adaptive rejection sampling. A Monte Carlo study shows that the Bayesian estimators proposed outperform any other estimators reported elsewhere in the sense of bias, variance, and root mean squared error.

On the Sampling Efficiency by the Adaptive Sampling Technique based on Performance Index (목적함수가 고려된 적응샘플링기법에 의한 샘플링효율에 관한 연구)

  • 고명삼;김창은
    • 전기의세계
    • /
    • v.25 no.6
    • /
    • pp.89-96
    • /
    • 1976
  • In this paper we deal with that the performance indices by the three adaptive sampling control laws are computed and compared. It shows that the most effective control law is the integral input difference method. The techniques of simulation by Analog/Hybrid computer are presented and the results of the output illustrate that the maximum and minimum sampling interval can be applied to the time sharing of digital controller or computer.

  • PDF

Design of a 3-D Adaptive Sampling Rate Tracking Algorithm for a Phased Array Radar (위상배열 레이다를 위한 3차원 적응 표본화 빈도 추적 알고리듬의 설계)

  • Son, Keon;Hong, Sun-Mog
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.62-72
    • /
    • 1993
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three dimensional adaptive target tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track updata illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver level detector. A detailed simulation is conducted to test the validity of our tracking algorithm for target trajectories under various conditions of maneuver.

  • PDF

Analysis and Design of a Separate Sampling Adaptive PID Algorithm for Digital DC-DC Converters

  • Chang, Changyuan;Zhao, Xin;Xu, Chunxue;Li, Yuanye;Wu, Cheng'en
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2212-2220
    • /
    • 2016
  • Based on the conventional PID algorithm and the adaptive PID (AD-PID) algorithm, a separate sampling adaptive PID (SSA-PID) algorithm is proposed to improve the transient response of digitally controlled DC-DC converters. The SSA-PID algorithm, which can be divided into an oversampled adaptive P (AD-P) control and an adaptive ID (AD-ID) control, adopts a higher sampling frequency for AD-P control and a conventional sampling frequency for AD-ID control. In addition, it can also adaptively adjust the PID parameters (i.e. $K_p$, $K_i$ and $K_d$) based on the system state. Simulation results show that the proposed algorithm has better line transient and load transient responses than the conventional PID and AD-PID algorithms. Compared with the conventional PID and AD-PID algorithms, the experimental results based on a FPGA indicate that the recovery time of the SSA-PID algorithm is reduced by 80% and 67% separately, and that overshoot is decreased by 33% and 12% for a 700mA load step. Moreover, the SSA-PID algorithm can achieve zero overshoot during startup.

Optimal SVM learning method based on adaptive sparse sampling and granularity shift factor

  • Wen, Hui;Jia, Dongshun;Liu, Zhiqiang;Xu, Hang;Hao, Guangtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1110-1127
    • /
    • 2022
  • To improve the training efficiency and generalization performance of a support vector machine (SVM) in a large-scale set, an optimal SVM learning method based on adaptive sparse sampling and the granularity shift factor is presented. The proposed method combines sampling optimization with learner optimization. First, an adaptive sparse sampling method based on the potential function density clustering is designed to adaptively obtain sparse sampling samples, which can achieve a reduction in the training sample set and effectively approximate the spatial structure distribution of the original sample set. A granularity shift factor method is then constructed to optimize the SVM decision hyperplane, which fully considers the neighborhood information of each granularity region in the sparse sampling set. Experiments on an artificial dataset and three benchmark datasets show that the proposed method can achieve a relatively higher training efficiency, as well as ensure a good generalization performance of the learner. Finally, the effectiveness of the proposed method is verified.