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Bayesian Estimation of the Nakagami-m Fading
Parameter*

Young Sook Son? and Mira Oh?

Abstract

A Bayesian estimation of the Nakagami-m fading parameter is developed.
Bayesian estimation is performed by Gibbs sampling, including adaptive
rejection sampling. A Monte Carlo study shows that the Bayesian estimators
proposed outperform any other estimators reported elsewhere in the sense
of bias, variance, and root mean squared error.
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1. Introduction

A useful statistical model for the envelope of the fading channel response is
the Nakagami-m distribution of Nakagami (1960). Suzuki (1977) showed that
the Nakagami-m distribution provides the best fit for data signals received in
urban radio channels. The probability density function (pdf) for this distribution
is given by

2 m\™ o 1 mr? 1
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where the scale parameter Q is defined as E(R?) = Q and the shape parameter
m called the fading parameter is defined as m = {E(R2)}2 /Var(R?).
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Extensive Monte Carlo simulations to assess the performance of several max-
imum likelihood (ML) based estimators and the method of moment(MM) based
estimators for the fading parameter m have been shown in Adbi and Kaveh
(2000), Cheng and Beaulieu (2001, 2002), and Zhang (2002).

Son and Oh (2006) proposed a Bayesian estimation of the two-parameter
gamma distribution under the noninformative prior. The Bayesian estimator is
obtained by Gibbs sampling of Gelfand and Smith (1990). The generation of
the shape parameter in the Gibbs sampler is implemented using the adaptive
rejection sampling (ARS) algorithm of Gilks and Wild (1992). Since a gamma
random variable is the square of a Nakagami random variable, we can directly
derive a Bayesian estimation of Nakagami-m fading parameter based on Son and
Oh (2006). In this paper, we develop a Bayesian estimation of Nakagami-m
fading parameter under a conjugate prior that reflects real world behaviour. Our
Monte Carlo study shows that the Bayesian estimators proposed outperform all
other estimators reported elsewhere with regards to bias, variance, and root mean
square error.

2. Bayesian Estimation

Let R be a Nakagami random variable with a pdf (1.1). Then Z = R? is a
gamma random variable with a pdf

1 1
fz(z|m,B) = m-1 g=2/8, z >0, mzi’ B=—>0.

Q
T(m)g™ ° m

If the random sample {R1, Ra, ..., Rn} is obtained from the Nakagami-m dis-
tribution, Z = {Z1,Z3,...,Zn}, where Z; = R]2-, j=12,...,N, is a random
sample from the gamma distribution with parameters m(> 1/2) and (> 0). The
likelihood function, given an observed sample z = {21, 22, ..., 2N }, can be written

b= (e gt} 4 ().

where u = Hfil zi and v = Zf\il 2.

as

Bayesian inference is based on the posterior distribution obtained by combin-
ing the prior density of parameters and the likelihood function with the sample
information observed. The conjugate prior assumption central in the Bayesian
inference facilitates the derivation of the posterior distribution, since it makes the
prior density and the likelihood function have the same functional form. Damsleth
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(1975) developed a class of conjugate prior distributions for the unknown param-
eters of gamma distribution. A very general conjugate prior is obtained by the
transformation of scale parameter from equation (3) of Miller (1980, p. 65) as
follows

R

where N7 > 0, Ny > 0, u; > 0, v1 > 0 such that ul(l/Nl)/(vl/Nl) < 1. Selecting
the values of hyperparameters, N1, N2, u; and vy, leads to a wide variety of prior
distribution and allows to take into account the prior beliefs on the studied data.
The hyperparameter values may determined from historical data or expert’s sub-
jective knowledge. If the prior knowledge for the unknown parameters is very
vague, N1 = Ng = v; = 0 and u; = 1 can be selected. This prior becomes the
noninformative prior, 7(m, 3) = 1/0.

The joint posterior pdf is proportional to the product of equation (2.1) and
(2.2), that is,

where N3 = N + Ni, Ny = N+ N3, us = u-uj and vo = v + v;. Now, Bayesian
parameter estimation is conducted using Gibbs sampling. The full conditional
distributions to construct the Gibbs sampler are obtained as follows.

(8| m, 2] ~ IG (Ngm, vz_l) ,

where IG(a,b) denotes the inverse gamma distribution with parameters a and
b, and its pdf is defined by fx(z | a,b) = (I'(a)b®) ' o=tV exp(—1/(bz)), = >
0, a,b> 0, if X ~ IG(a,b). In addition, the conditional pdf of m is

p(m | 8,2) o g(m) = {ﬁ}N - {ﬂ%m} g™,

In the Gibbs sampler, while it is very straightforward to generate (3 from the
inverse gamma distribution, to generate m from p(m | 8,2) can be difficult due
to including the gamma function of m and an unknown normalizing constant.
When the probability density is defined only up to a normalizing constant, the
general sampling method is a rejection sampling method in Ripley (1987). How-
ever, the rejection sampling method still needs the envelope function g,(m) such
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as g(m) < gu(m). The ARS method no longer requires a maximum of g(m), only
if the log-concavity of p(m | 3,2) is proven. Let T, = {(mg, M1, ..., Mis1)| mo <
myp < --- < mgy1) be a set of abscissae in D = {m | m > 1/2}, where my
and my1 are the possibly infinite lower and upper limits of D. For 1 < i <
7 <k let L;ij(m : T) denote the straight line through points (m;, In(g(m;))) and
(mj,1In{g(m;))) on a convex curve In(g(m)). Then a piecewise linear function
ug(m) is defined by

ug(m) = min[L;_y ;(m; Ti), Liv1i42(m; )], m <m <myya.

Thus due to the log-concavity of p(m | §,2), ux(m) is an envelope for In g(m),
i.e. g(m) < exp{ug(m)}. Now the rejection sampling can be performed with the
sampling distribution defined by

 exp(ug(m))
SKm) = e Tun(m)} dm

If we use the derivation formula of the poly gamma function (Abramowitz and
Stegun, 1972), we can easily show

82 — e
53 p(m | B,2) = —N3;(m+3) 2<0.
Hence, the conditional density, p(m | 3,z), of m is log-concave. Now, we can di-
rectly apply the ARS algorithm to generate m. The Gibbs sampler is constructed

as follows.

Gibbs Sampling Algorithm

[STEP 1] Initial Step : Adopt m(©) as the initial value of m.
[STEP 2] Repetition Step : Fori=0,1,2,...,1,

— Generate 80+Y from IG (N4m(i),v2_1).

— Perform the following ARS algorithm to generate m{+1) from the con-
ditional posterior distribution p(m | 8, z).

Adaptive Rejection Sampling Algorithm
[STEP 2.1] Initial Step

— Set k, the number of abscissae, and select T} in D.
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[STEP 2.2] Sampling Step
— Generate m* from Si(m).
— Generate U from the uniform distribution U(0, 1).
— Set mU*1) = m* and go to STEP 2, if U < g(m*) /exp{ux(m*)}.
Otherwise, go to STEP 2.3.
[STEP 2.3] Updating Step
— Include m* in Ty to form Tj41, and increment k.
— Return to STEP 2.2.

3. Numerical Results

We conducted Monte Carlo simulations with MATLAB (2002) to assess the
performance of non Bayesian estimators and Bayesian estimators obtained using
Gibbs sampling and ARS. The non Bayesian estimators compared with are the
method of moment (MM) estimator, the noninteger-moment estimator (CB) of
Cheng and Beaulieu (2002), the limiting member (WCB) in the class of MM esti-
mator in Wines et al. (2003), as the MM based estimators, and the approximate
maximum likelihood estimator (THOM) of Thom (1958) , another approximate
estimator (GD) of Greenwood and Durand (1960), and a recursive solution (BS)
to the ML equation of Bowman and Shenton (1988), as the ML based estimators.
The estimators, MM, CB, THOM, GD, BS, are already well defined in Zhang
(2002), respectively.

All of the experiments are performed for two sample sizes, n = 30 or n = 100.
The 1,000 Nakagami random samples are generated for Q2 = 1, without loss of
generality, and m = 0.57, j = 1,2,...,30. The mean of 100 m’s generated by
100 Gibbs samples is used as a Bayesian estimator (BAYES) of m under the
conjugate or the noninformative prior. The hyperparameters, v; and u;, are
determined from the arithmetic mean and the geometric mean of a prior sample
in hypothetically historical experiment generated with a prior sample of size
N1 = Ny = 30 or 100, respectively. The estimators, MM and THOM, are used
as starting values required for the estimators, BS and BAYES, respectively. The
performance of the estimator, CB, for large integer p values approaches that of
the ML estimator. Therefore, we set p = 100 as a large value p of CB.

Figure 3.1 and Figure 3.3 show simulated bias, variance, and root mean square
error(RMSE) of each estimator based on 1,000 repetitions of samples of size 30
and 100, respectively. It is shown from two figures that non Bayesian estimators
have positive biases, whereas the Bayesian estimators are relatively unbiased.
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When we inspect closely numerical results of Figure 3.1 and Figure 3.3, we can
observe that the differences between all non Bayesian estimators are indistin-
guishable when compared with the Bayesian estimators, although the estimator,
WCB, is better in the bias than the remainder except the Bayesian estimators.
The MM estimator that gave the worst results among all of them was excluded
from the figure. Since the simulation curves of three Bayesian estimators are very
low compared with others, it is not easy to distinguish between them. Therefore,
we plotted these three Bayesian estimators in one figure, Figure 3.2 for sample
size n = 30 or Figure 3.4 for sample size n = 100. We note that for sample
size n = 30, the scale of y-axis in RMSE of Figure 3.1 is from 0 to 4.890, while
that in Figure 3.2 is from 0 to 0.217, and that for sample size n = 100, the
scale of y-axis in RMSE of Figure 3.3 is from 0 to 1.873, while that in Figure
3.4 is from 0 to 0.138. As results, the Bayesian estimators surpass others, with
regards to bias, variance, and RMSE. Also, Figure 3.2 and Figure 3.4 show that
the Bayesian estimators under the conjugate prior with the greater prior sample
size, N1 = 100, are better than others in the sense of variance and RMSE. In
conclusion, our simulation study shows that the number of repetitions in ARS
algorithm is more as the shape parameter m is larger. So, the time required in
the Bayesian estimation very increases. We guess the reason is the lackness of
log-concavity due to the flatness of p(m | 3, z) for the very large shape parameter.
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Figure 3.1: Simulated bias, variance and root mean square error (RMSE), n = 30
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Figure 3.2: Simulated bias, variance and root mean square error (RMSE) of
Bayesian estimators, n = 30
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Figure 3.3: Simulated bias, variance and root mean square error (RMSE), n = 100
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Figure 3.4: Simulated bias, variance and root mean square error (RMSE) of
Bayesian estimators, n = 100

4. Conclusion

In this paper, the Bayesian estimation for the Nakagami-m parameter was pro-
posed. The Bayesian estimation was performed by operating the Gibbs sampler
with the adaptive rejection sampling algorithm. A numerical study shows that
Bayesian estimators are superior over all other non Bayesian estimators. Though
it is generally expected that Bayesian inference with noninformative prior and
classical inference using likelihood theory agree, we think that the reason the
Bayesian estimator with vague prior information outperforms the ML based es-
timators is that the likelihood function is not be exactly optimized and the ML
based estimators are obtained by approximation. The precision of the Bayesian
estimators proposed makes up for the computational complexity requiring com-
puter programming skills, compared to non Bayesian estimators.
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