• Title/Summary/Keyword: Adaptive power control

Search Result 663, Processing Time 0.031 seconds

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

The Optimal Controller Design of Buck-Boost Converter by using Adaptive Tabu Search Algorithm Based on State-Space Averaging Model

  • Pakdeeto, Jakkrit;Chanpittayagit, Rangsan;Areerak, Kongpan;Areerak, Kongpol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1146-1155
    • /
    • 2017
  • Normally, the artificial intelligence algorithms are widely applied to the optimal controller design. Then, it is expected that the best output performance is achieved. Unfortunately, when resulting controller parameters are implemented by using the practical devices, the output performance cannot be the best as expected. Therefore, the paper presents the optimal controller design using the combination between the state-space averaging model and the adaptive Tabu search algorithm with the new criteria as two penalty conditions to handle the mentioned problem. The buck-boost converter regulated by the cascade PI controllers is used as the example power system. The results show that the output performance is better than those from the conventional design method for both input and load variations. Moreover, it is confirmed that the reported controllers can be implemented using the realistic devices without the limitation and the stable operation is also guaranteed. The results are also validated by the simulation using the topology model of MATLAB and also experimentally verified by the testing rig.

Adaptive Compensation Technique of Parameter Variation for Quick Torque Response of an Induction Motor Drive (유도전동기의 속응 토크제어를 위한 파라미터 변동의 적응보상기법)

  • 손진근;정을기;김준환;전희종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • In this paper, an adaptive compensation technique for parameter variation is proposed which can perform quick torque response in vector control of an induction motors. To solve the problem of control performance degradation due to parameter variation in an induction motor, a rotor resistance estimation is performed by the model reference adaptive control(MRAC). The algorithm of rotor resistance estimation is composed of the error relationship which is generated between a motor real instantaneous reactive power and an estimated instantaneous reactive power. The advantage of such a real reactive power reference model is independence of the motor parameter variation. The estimation rotor resistance values are applied to the direct vector control system with a flux observer. Finally, the simulations and experiment are presented to validate the rotor resistance estimation algorithm of induction motor.

  • PDF

Design of Robust Adaptive Fuzzy Controller for Multimachine Power System (다기계통 안정화를 위한 강인한 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun;Park, Young-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.407-414
    • /
    • 2001
  • In this paper, we present a decentralized robust adaptive fuzzy controller for the transient stability and voltage regulation of a multimachine power system under a sudden fault. Power systems have uncertain dynamics due to various effects such a lightning, severe storms and equipment failure in addition to interconnections between generators. Hence a robust controller to deal with these uncertainties in needed. The fuzzy systems are adapted using a Lyapunov-based design and the stability of each closed-loop system is guaranteed. Simulation results show that satisfactory performance is achieved by proposed controller.

  • PDF

Sampling time-based Adaptive Beacon Interval and Superframe Duration Control in IEEE 802.15.4 (IEEE 802.15.4에 있어서 샘플링 주기를 이용한 비콘 구간 및 슈퍼프레임 구간의 적응적 제어방법)

  • Kim, Jeong-Ah;Jeon, Yeong-Ho;Park, Hong-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.75-82
    • /
    • 2007
  • This paper proposes the way that reduces power consumption of the IEEE 802.15.4-based sensor network. To reduce power consumption, we consider following two schemes; first scheme is the Adaptive Beacon Interval Control. The next is the Adaptive Superframe Duration Control. Our results show that these guarantee reducing power consumption in ns-2 simulator.

Nonlinear Backstepping Control of SynRM Drive Systems Using Reformed Recurrent Hermite Polynomial Neural Networks with Adaptive Law and Error Estimated Law

  • Ting, Jung-Chu;Chen, Der-Fa
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1380-1397
    • /
    • 2018
  • The synchronous reluctance motor (SynRM) servo-drive system has highly nonlinear uncertainties owing to a convex construction effect. It is difficult for the linear control method to achieve good performance for the SynRM drive system. The nonlinear backstepping control system using upper bound with switching function is proposed to inhibit uncertainty action for controlling the SynRM drive system. However, this method uses a large upper bound with a switching function, which results in a large chattering. In order to reduce this chattering, a nonlinear backstepping control system using an adaptive law is proposed to estimate the lumped uncertainty. Since this method uses an adaptive law, it cannot achiever satisfactory performance. Therefore, a nonlinear backstepping control system using a reformed recurrent Hermite polynomial neural network with an adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in order to enhance the robustness of the SynRM drive system. Further, the reformed recurrent Hermite polynomial neural network with two learning rates is derived according to an increment type Lyapunov function to speed-up the parameter convergence. Finally, some experimental results and a comparative analysis are presented to verify that the proposed control system has better control performance for controlling SynRM drive systems.

On discrete nonlinear self-tuning control

  • Mohler, R.-R.;Rajkumar, V.;Zakrzewski, R.-R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1659-1663
    • /
    • 1991
  • A new control design methodology is presented here which is based on a nonlinear time-series reference model. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible a.c. transmission system (FACTS) with series capacitor power feedback control is studied. A bilinear auto-regressive moving average (BARMA) reference model is identified from system data and the feedback control manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index (J). A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack. These applications are typical of the numerous plants for which nonlinear adaptive control has the potential to provide significant performance improvements. For aircraft control, significant maneuverability gains can provide safer transportation under large windshear disturbances as well as tactical advantages. For FACTS, there is the potential for significant increase in admissible electric power transmission over available transmission lines along with energy conservation. Electric power systems are inherently nonlinear for significant transient variations from synchronism such as may result for large fault disturbances. In such cases, traditional linear controllers may not stabilize the swing (in rotor angle) without inefficient energy wasting strategies to shed loads, etc. Fortunately, the advent of power electronics (e.g., high-speed thyristors) admits the possibility of adaptive control by means of FACTS. Line admittance manipulation seems to be an effective means to achieve stabilization and high efficiency for such FACTS. This results in parametric (or multiplicative) control of a highly nonlinear plant.

  • PDF

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

A Design of Fuzzy Power System Stabilizer using Adaptive Evolutionary Computation (적응진화연산을 이용한 퍼지-전력계통안정화장치 설계)

  • Hwang, Gi-Hyun;Park, June-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.704-711
    • /
    • 1999
  • This paper presents a design of fuzzy power system stabilizer (FPSS) using adaptive evolutionary computation (AEC). We have proposed an adaptive evolutionary algorithm which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. FPSS shows better control performances than conventional power system stabilizer (CPSS) in three-phase fault with heavy load which is used when tuning FPSS. To show the robustness of the proposed FPSS, it is appliedto damp the low frequency oscillations caused by disturbances such as three-phase fault with normal and light load, the angle deviation of generator with normal and light load and the angle deviation of generator with heavy load. Proposed FPSS shows better robustness than CPSS.

  • PDF

Design of an Adaptive Robust Controller Based on Explorized Policy Iteration for the Stabilization of Multimachine Power Systems (다기 전력 시스템의 안정화를 위한 탐색화된 정책 반복법 기반 적응형 강인 제어기 설계)

  • Chun, Tae Yoon;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1118-1124
    • /
    • 2014
  • This paper proposes a novel controller design scheme for multimachine power systems based on the explorized policy iteration. Power systems have several uncertainties on system dynamics due to the various effects of interconnections between generators. To solve this problem, the proposed method solves the LQR (Linear Quadratic Regulation) problem of isolated subsystems without the knowledge of a system matrix and the interconnection parameters of multimachine power systems. By selecting the proper performance indices, it guarantees the stability and convergence of the LQ optimal control. To implement the proposed scheme, the least squares based online method is also investigated in terms of PE (Persistency of Excitation), interconnection parameters and exploration signals. Finally, the performance and effectiveness of the proposed algorithm are demonstrated by numerical simulations of three-machine power systems with governor controllers.