• Title/Summary/Keyword: Adaptive observer

Search Result 338, Processing Time 0.021 seconds

Adaptive Compensation Technique of Parameter Variation for Quick Torque Response of an Induction Motor Drive (유도전동기의 속응 토크제어를 위한 파라미터 변동의 적응보상기법)

  • 손진근;정을기;김준환;전희종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • In this paper, an adaptive compensation technique for parameter variation is proposed which can perform quick torque response in vector control of an induction motors. To solve the problem of control performance degradation due to parameter variation in an induction motor, a rotor resistance estimation is performed by the model reference adaptive control(MRAC). The algorithm of rotor resistance estimation is composed of the error relationship which is generated between a motor real instantaneous reactive power and an estimated instantaneous reactive power. The advantage of such a real reactive power reference model is independence of the motor parameter variation. The estimation rotor resistance values are applied to the direct vector control system with a flux observer. Finally, the simulations and experiment are presented to validate the rotor resistance estimation algorithm of induction motor.

  • PDF

Uncertainty Observer using the Radial Basis Function Networks for Induction Motor Control

  • Huh, Sung-Hoe;Lee, Kyo-Beum;Ick Choy;Park, Gwi-Tae;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • A stable adaptive sensorless speed controller for three-level inverter fed induction motor direct torque control (DTC) system using the radial-basis function network (RBFN) is presented in this paper. Torque ripple in the DTC system for high power induction motor could be drastically reduced with the foregoing researches of switching voltage selection and torque ripple reduction algorithms. However, speed control performance is still influenced by the inherent uncertainty of the system such as parametric uncertainty, external load disturbances and unmodeled dynamics, and its exact mathematical model is much difficult to be obtained due to their strong nonlinearity. In this paper, the inherent uncertainty is approximated on-line by the RBFN, and an additional robust control term is introduced to compensate for the reconstruction error of the RBFN instead of the rich number of rules and additional updated parameters. Control law for stabilizing the system and adaptive laws for updating both of weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov, and the stability proof of the whole control system is presented. Computer simulations as well as experimental results are presented to show the validity and effectiveness of the proposed system.

Adaptive image enhancement technique considering visual perception property in digital chest radiography (시각특성을 고려한 디지털 흉부 X-선 영상의 적응적 향상기법)

  • 김종효;이충웅;민병구;한만청
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.160-171
    • /
    • 1994
  • The wide dynamic range and severely attenuated contrast in mediastinal area appearing in typical chest radiographs have often caused difficulties in effective visualization and diagnosis of lung diseases. This paper proposes a new adaptive image enhancement technique which potentially solves this problem and there by improves observer performance through image processing. In the proposed method image processing is applied to the chest radiograph with different processing parameters for the lung field and mediastinum adaptively since there are much differences in anatomical and imaging properties between these two regions. To achieve this the chest radiograph is divided into the lung and mediastinum by gray level thresholding using the cumulative histogram and the dynamic range compression and local contrast enhancement are carried out selectively in the mediastinal region. Thereafter a gray scale transformation is performed considering the JND(just noticeable difference) characteristic for effective image displa. The processed images showed apparenty improved contrast in mediastinum and maintained moderate brightness in the lung field. No artifact could be observed. In the visibility evaluation experiment with 5 radiologists the processed images with better visibility was observed for the 5 important anatomical structures in the thorax.

  • PDF

Input Voltage Sensorless Control for 3 Phase Vienna Rectifier (3상 비엔나 정류기 입력 전압 센서리스 제어)

  • Lee, Sang-Ri;Kim, Hag-Wone;Cho, Kwan-Yuhl;Hwang, Soon-Sang;Yoon, Byung-Chul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • In this paper, a new grid voltage estimation algorithm without voltage sensors is proposed for the three-phase vienna rectifier. Generally, input voltage sensor circuits increase size and cost of the PWM rectifier In order to reduce the cost and size and in order to increase reliability from the electrical noise, grid voltage estimation scheme without input voltage sensor is highly required. In this paper, the grid voltage estimation algorithm is proposed by a simple MRAS(Model Reference Adaptive System) observer without input voltage sensors. The validity of the proposed method is proven by simulation and experiment on the three-phase vienna rectifier system.

Smart composite repetitive-control design for nonlinear perturbation

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.473-485
    • /
    • 2024
  • This paper proposes a composite form of fuzzy adaptive control plan based on a robust observer. The fuzzy 2D control gains are regulated by the parameters in the LMIs. Then, control and learning performance indices with weight matrices are constructed as the cost functions, which allows the regulation of the trade-off between the two performance by setting appropriate weight matrices. The design of 2D control gains is equivalent to the LMIs-constrained multi-objective optimization problem under dual performance indices. By using this proposed smart tracking design via fuzzy nonlinear criterion, the data link can be further extended. To evaluate the performance of the controller, the proposed controller was compared with other control technologies. This ensures the execution of the control program used to track position and trajectory in the presence of great model uncertainty and external disturbances. The performance of monitoring and control is verified by quantitative analysis. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.

SPEED-SENSORLESS VECTOR CONTROL OF INDUCTION MOTOR USING MRAS (MRAS를 이용한 유도전동기의 속도센서 없는 벡터제어)

  • Kim, Kwang-Yeon;Cho, Kye-Seok;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.148-151
    • /
    • 1991
  • This paper describes the vector control system estimates rotor speed based on MRAS(Model Reference Adaptive Control) and this estimate is used for speed feedback control. The stability of speed estimator is proved on the basis of hyperstability theory. In order to improve the performance of speed control, the load torque is estimated by load torque observer and speed controller compensates this estimate value. Thus the robust vector control system against load torque disturbance is constructed.

  • PDF

Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations (파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Kim, Seoung-Beom;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF

A Robust Control of PM Synchronous Motor Using Accelerating Torque Feedback (가속 토오크 궤환을 이용한 영구자석 동기전동기의 강인제어)

  • Chung, Se-Kyo;Kim, Chang-Gyun;Park, Hee-Jung;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.571-573
    • /
    • 1996
  • A robust control technique of the PM synchronous motor is presented using an accelerating torque feedback. The accelerating torque is estimated by using an adaptive torque observer and then this estimated torque is controlled by a VSC technique. By employing the proposed torque control, the speed control performance of the motor is improved and the load independency can be realized. The simulations carried out for the PM synchronous motor to verily the effectiveness of the proposed control.

  • PDF

Sensorless Vector Control of Induction Motor Using Neural Networks (신경망을 이용한 유도전동기 센서리스 벡터제어)

  • Park, Seong-Wook;Choi, Jong-Woo;Kim, Heung-Geun;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.195-200
    • /
    • 2004
  • Many kinds of speed sensorless control system of induction motor had been developed. But it is difficult to implement at the real system because of complex algorithm and equations. This paper investigates a novel speed sensorless control of induction motor using neural networks. The proposed control strategy is based on neural networks using stator current and output of neural model based on state observer. The errors between the stator current and the output of neural model are back-propagated to adjust the rotor speed, so that adaptive state variable will coincide with the desired state variable. This algorithm may overcome several shortages of conventional model, such as integrator problems, small EMF at low speed and relatively large sensitivity of stator resistance variation. Also, this paper presents a newly developed optimal equation about the momentum constant and the learning rate. The proposed algorithms are verified through simulation.

Torque Harmonics Minimization in PMSM by Using Flux Harmonics Estimation (쇄교자속 추정을 통한 영구자석형 동기전동기의 토오크 제어)

  • 문형태
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.439-442
    • /
    • 2000
  • An adaptive nonlinear control of a brushless direct drive motor(BLDDM) is proposed. Comparing to the traditional PMSM the direct drive motor has smaller number of per pole and per phase slots to provide higher torque in low speed. This generic construction generates flux harmonics and finally results in unwanted torque harmonics. To control the speed a feedback linearization method is applied by choosing the $i_{ds}$ and $\omega_{m}$ as the output variables. The control of the flux harmonics is provided by using a flux observer with MRAC technique. As shown in the simula-tion results the proposed nonlinear speed controller has a good speed response in the steady state and robust to the flux variation

  • PDF