• 제목/요약/키워드: Adaptive neuron

검색결과 34건 처리시간 0.03초

신경망을 이용한 적응 다중 대역 필터 설계 (A Study on Adaptive Filter Bank using Neural Networks in Time Domain)

  • 이건기;이주원;김광열;방만식;이병로;김영일
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.673-677
    • /
    • 2003
  • 본 연구에서는 적응 필터 뱅크와 유사한 신경망을 이용한 시간영역에서의 새로운 필터뱅크(뉴럴 필터 뱅크)와 필터 창 함수를 가진 새로운 필터 뉴런을 제안하였다. 제안된 뉴럴 필터 뱅크의 성능을 검증하기 위해 두 가지의 예를 들어 실험하였다. 실험에서 제안된 기법은 기존의 방법인 주파수 영역에서의 필터뱅크보다 간단한 구조와 고속처리가 가능한 특성을 보였다. 따라서 제안된 방법은 시간 영역에서의 신호의 특징 검출에 있어 높은 성능을 제공할 것으로 사료된다.

Adaptive-Linear-Neuron 구조의 ANN을 이용한 3상 PWM 컨버터의 개방고장 진단 (Open Fault Diagnosis Using ANN of Adaptive-Linear-Neuron Structure for Three-Phase PWM Converter)

  • 김원재;김상훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.136-137
    • /
    • 2019
  • 본 논문에서는 ADALINE (Adaptive-Linear-Neuron) 구조의 ANN(Artificial Neural Network)을 이용한 3상 PWM 컨버터의 개방고장 진단 방법에 대해 제안한다. 3상 PMW 컨버터에서 스위치의 개방고장이 발생한 경우 보호회로에 의해 시스템이 중단되지 않으며, 개방고장으로 인한 상전류의 고조파와 직류 성분에 의해 주변 기기에 고장에 의한 파급효과가 나타날 수 있다. 이에 본 논문에서는 ADALINE을 이용하여 각 상의 THD(Total Harmonics Distortion)와 직류 성분 얻고 대소비교를 통해 개방고장이 발생한 스위치를 진단하는 방법에 대해 제안한다.

  • PDF

SYNCHRONIZATION OF UNIDIRECTIONAL RING STRUCTURED IDENTICAL FITZHUGH-NAGUMO NETWORK UNDER IONIC AND EXTERNAL ELECTRICAL STIMULATIONS

  • Ibrahim, Malik Muhammad;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • 제36권5호
    • /
    • pp.547-554
    • /
    • 2020
  • Synchronization of unidirectional identical FitzHugh-Nagumo systems coupled in a ring structure under ionic and external electrical stimulations is investigated. In this network, each neuron is only connected and transmit signals to its next neuron via synaptic strength called gapjunctions. Adaptive control theory and Lyapunov stability theory are used to propose a unique control scheme with necessary and sufficient conditions which guarantee the synchronization of the neuronal network. Finally, the effectiveness of the proposed scheme is shown through numerical simulations.

Adaptive Neural PLL for Grid-connected DFIG Synchronization

  • Bechouche, Ali;Abdeslam, Djaffar Ould;Otmane-Cherif, Tahar;Seddiki, Hamid
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.608-620
    • /
    • 2014
  • In this paper, an adaptive neural phase-locked loop (AN-PLL) based on adaptive linear neuron is proposed for grid-connected doubly fed induction generator (DFIG) synchronization. The proposed AN-PLL architecture comprises three stages, namely, the frequency of polluted and distorted grid voltages is tracked online; the grid voltages are filtered, and the voltage vector amplitude is detected; the phase angle is estimated. First, the AN-PLL architecture is implemented and applied to a real three-phase power supply. Thereafter, the performances and robustness of the new AN-PLL under voltage sag and two-phase faults are compared with those of conventional PLL. Finally, an application of the suggested AN-PLL in the grid-connected DFIG-decoupled control strategy is conducted. Experimental results prove the good performances of the new AN-PLL in grid-connected DFIG synchronization.

LVQ와 ADALINE을 이용한 학습 알고리듬 (Learning Algorithm using a LVQ and ADALINE)

  • 윤석환;민준영;신용백
    • 산업경영시스템학회지
    • /
    • 제19권39호
    • /
    • pp.47-61
    • /
    • 1996
  • We propose a parallel neural network model in which patterns are clustered and patterns in a cluster are studied in a parallel neural network. The learning algorithm used in this paper is based on LVQ algorithm of Kohonen(1990) for clustering and ADALINE(Adaptive Linear Neuron) network of Widrow and Hoff(1990) for parallel learning. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists of 250 patterns of ASCII characters normalized into $8\times16$ and 1124. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists 250 patterns of ASCII characters normalized into $8\times16$ and 1124 samples acquired from signals generated from 9 car models that passed Inductive Loop Detector(ILD) at 10 points. In ASCII character experiment, 191(179) out of 250 patterns are recognized with 3%(5%) noise and with 1124 car model data. 807 car models were recognized showing 71.8% recognition ratio. This result is 10.2% improvement over backpropagation algorithm.

  • PDF

신경망 구조의 적응 Wiener 필터를 이용한 비선형 잡음감쇠기 (Nonlinear Noise Attenuator by Adaptive Wiener Filter with Neural Network)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.71-76
    • /
    • 2023
  • 본 논문은 음향잡음감쇠기에서 신경망 구조의 Wiener 필터를 이용하여 비선형 잡음을 감쇠시키는 방법에 대하여 연구하였다. 이 시스템은 기존의 적응필터를 이용하는 대신 신경망 위너필터를 이용한 심층학습 알고리즘으로 비선형 잡음감쇠 성능을 개선한다. 128-neuron, 8-neuron 은닉층과 오차 역전파(back propagation) 알고리즘을 이용하여 비선형 잡음이 포함된 단일입력 음성신호로부터 음성을 추정한다. 본 연구에서 비선형 잡음에 대한 감쇠 성능을 검증하기 위하여 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 모의실험 결과, 본 시스템은 비선형 잡음이 포함되어 있는 경우에도 위너필터 대신 FNN 필터를 사용하면 잡음감쇠 성능이 상당히 개선되는 것을 볼 수 있다. 이는 FNN 필터의 복잡한 구조가 어떤 형태의 비선형 특성도 잘 표현하기 때문이다.

MFSFET의 신경회로망 응용을 위한 CUJT와 PUT 소자를 이용한 발진 회로에 관한 연구 (Study on Oscillation Circuit Using CUJT and PUT Device for Application of MFSFET′s Neural Network)

  • 강이구;장원준;장석민;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.55-58
    • /
    • 1998
  • Recently, neural networks with self-adaptability like human brain have attracted much attention. It is desirable for the neuron-function to be implemented by exclusive hardware system on account of huge quantity in calculation. We have proposed a novel neuro-device composed of a MFSFET(ferroelectric gate FET) and oscillation circuit with CUJT(complimentary unijuction transistor) and PUT(programmable unijuction transistor). However, it is difficult to preserve ferroelectricity on Si due to existence of interfacial traps and/or interdiffusion of the constitutent elements, although there are a few reports on good MFS devices. In this paper, we have simulated CUJT and PUT devices instead of fabricating them and composed oscillation circuit. Finally, we have resented, as an approach to the MFSFET neuron circuit, adaptive learning function and characterized the elementary operation properties of the pulse oscillation circuit.

  • PDF

적응적 가중치를 이용한 RAM 기반 누적 신경망 (A RAM-based Cumulative Neural Net with Adaptive Weights)

  • 이동형;김성진;권영철;이수동
    • 한국멀티미디어학회논문지
    • /
    • 제13권2호
    • /
    • pp.216-224
    • /
    • 2010
  • RAM 기반 신경망은 빠른 처리 속도와 하드웨어 구현의 용이성 등의 장점을 가지고 있지만 반면에 메모리의 포화 문제, 반복학습, 일반화 패턴 추출의 어려움 등의 단점도 가지고 있다. 이런 단점을 극복하기 위해 누적 다중 판별자를 가지는 3차원 뉴로 시스템(3DNS) 등이 제안되었지만 메모리 포화 문제는 해결하지는 못하였다. 본 논문에서는 메모리 포화 문제를 해결하기 위하여 적응적 가중치를 가지는 AWN (Adaptive Weight Neuron)을 사용한 적응적 가중치 누적 신경망(AWCNN)을 제안한다. 제안된 모델은 AWN으로 3DNS을 개선하여 인식률과 메모리 포화 문제 해결을 향상하였다. 제안된 시스템의 평가는 전처리 과정 없이 NIST의 MNIST에서 제공하는 자료를 이용하여 실험하였다. AWCNN은 3DNS보다 1.5%이상의 향상된 인식률을 보였고 일반화 패턴을 이용한 인식에서는 모든 입력 패턴의 교육된 것과 비슷한 성능을 얻었다.

적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구 (A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture)

  • 오성권;김동원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권9호
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

Microscopic research on the olfactory organ of the Far Eastern brook lamprey Lethenteron reissneri (Pisces, Petromyzontidae)

  • Hyun-Tae Kim;Jong-Young Park
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.18.1-18.7
    • /
    • 2020
  • The olfactory anatomy and histology of Lethenteron reissneri were researched using a stereo microscope, a light microscope, and a scanning electron microscope. As in other lampreys, it shows same characters as follows: i) a single olfactory organ, ii) a single tubular nostril, iii) a single olfactory chamber with gourd-like form, iv) a nasal valve, v) a nasopharyngeal pouch, vi) a sensory epithelium (SE) of continuous distribution, vii) a supporting cells with numerous long cilia, viii) an accessory olfactory organ. However, the description of a pseudostratified columnar layer in the SE and Non SE is a first record, not reported in sea lamprey Petromyzon marinus. In particular, both 19 to 20 lamellae in number and olfactory receptor neuron's quarter ciliary length of the knob diameter differ from those of P. marinus. From these results, it might be considered that the olfactory organ of L. reissneri shows well adaptive structure of a primitive fish to slow flowing water with gravel, pebbles, and sand and a hiding habit into sand bottom at daytime. The lamellar number and neuron's ciliary length may be a meaningful taxonomic character for the class Petromyzonida.