• Title/Summary/Keyword: Adaptive neuron

Search Result 34, Processing Time 0.029 seconds

A Study on Adaptive Filter Bank using Neural Networks in Time Domain (신경망을 이용한 적응 다중 대역 필터 설계)

  • 이건기;이주원;김광열;방만식;이병로;김영일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.673-677
    • /
    • 2003
  • In this study, we propose the new filter bank that is adaptive filter bank using neural networks in time domain. Also, we proposed a new filter neuron as neuron with filter window, the structure and algorithm for filter banks. The performance of neural filter banks is shown from two examples. It show characteristics the simple structure and higher speed processing than traditional methods (filter banks in frequency domain, etc.). In many applications, the proposed method will provide the high performance to features detection of signals in time domain.

Open Fault Diagnosis Using ANN of Adaptive-Linear-Neuron Structure for Three-Phase PWM Converter (Adaptive-Linear-Neuron 구조의 ANN을 이용한 3상 PWM 컨버터의 개방고장 진단)

  • Kim, Won-Jae;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.136-137
    • /
    • 2019
  • 본 논문에서는 ADALINE (Adaptive-Linear-Neuron) 구조의 ANN(Artificial Neural Network)을 이용한 3상 PWM 컨버터의 개방고장 진단 방법에 대해 제안한다. 3상 PMW 컨버터에서 스위치의 개방고장이 발생한 경우 보호회로에 의해 시스템이 중단되지 않으며, 개방고장으로 인한 상전류의 고조파와 직류 성분에 의해 주변 기기에 고장에 의한 파급효과가 나타날 수 있다. 이에 본 논문에서는 ADALINE을 이용하여 각 상의 THD(Total Harmonics Distortion)와 직류 성분 얻고 대소비교를 통해 개방고장이 발생한 스위치를 진단하는 방법에 대해 제안한다.

  • PDF

SYNCHRONIZATION OF UNIDIRECTIONAL RING STRUCTURED IDENTICAL FITZHUGH-NAGUMO NETWORK UNDER IONIC AND EXTERNAL ELECTRICAL STIMULATIONS

  • Ibrahim, Malik Muhammad;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • v.36 no.5
    • /
    • pp.547-554
    • /
    • 2020
  • Synchronization of unidirectional identical FitzHugh-Nagumo systems coupled in a ring structure under ionic and external electrical stimulations is investigated. In this network, each neuron is only connected and transmit signals to its next neuron via synaptic strength called gapjunctions. Adaptive control theory and Lyapunov stability theory are used to propose a unique control scheme with necessary and sufficient conditions which guarantee the synchronization of the neuronal network. Finally, the effectiveness of the proposed scheme is shown through numerical simulations.

Adaptive Neural PLL for Grid-connected DFIG Synchronization

  • Bechouche, Ali;Abdeslam, Djaffar Ould;Otmane-Cherif, Tahar;Seddiki, Hamid
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.608-620
    • /
    • 2014
  • In this paper, an adaptive neural phase-locked loop (AN-PLL) based on adaptive linear neuron is proposed for grid-connected doubly fed induction generator (DFIG) synchronization. The proposed AN-PLL architecture comprises three stages, namely, the frequency of polluted and distorted grid voltages is tracked online; the grid voltages are filtered, and the voltage vector amplitude is detected; the phase angle is estimated. First, the AN-PLL architecture is implemented and applied to a real three-phase power supply. Thereafter, the performances and robustness of the new AN-PLL under voltage sag and two-phase faults are compared with those of conventional PLL. Finally, an application of the suggested AN-PLL in the grid-connected DFIG-decoupled control strategy is conducted. Experimental results prove the good performances of the new AN-PLL in grid-connected DFIG synchronization.

Learning Algorithm using a LVQ and ADALINE (LVQ와 ADALINE을 이용한 학습 알고리듬)

  • 윤석환;민준영;신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.47-61
    • /
    • 1996
  • We propose a parallel neural network model in which patterns are clustered and patterns in a cluster are studied in a parallel neural network. The learning algorithm used in this paper is based on LVQ algorithm of Kohonen(1990) for clustering and ADALINE(Adaptive Linear Neuron) network of Widrow and Hoff(1990) for parallel learning. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists of 250 patterns of ASCII characters normalized into $8\times16$ and 1124. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists 250 patterns of ASCII characters normalized into $8\times16$ and 1124 samples acquired from signals generated from 9 car models that passed Inductive Loop Detector(ILD) at 10 points. In ASCII character experiment, 191(179) out of 250 patterns are recognized with 3%(5%) noise and with 1124 car model data. 807 car models were recognized showing 71.8% recognition ratio. This result is 10.2% improvement over backpropagation algorithm.

  • PDF

Nonlinear Noise Attenuator by Adaptive Wiener Filter with Neural Network (신경망 구조의 적응 Wiener 필터를 이용한 비선형 잡음감쇠기)

  • Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.71-76
    • /
    • 2023
  • This paper studied a method of attenuating nonlinear noise using a Wiener filter of a neural network structure in an acoustic noise attenuator. This system improves nonlinear noise attenuation performance with a deep learning algorithm using a neural network Wiener filter instead of using a conventional adaptive filter. A voice is estimated from a single input voice signal containing nonlinear noise using a 128-neuron, 8-neuron hidden layer and an error back propagation algorithm. In this study, a simulation program using the Keras library was written and a simulation was performed to verify the attenuation performance for nonlinear noise. As a result of the simulation, it can be seen that the noise attenuation performance of this system is significantly improved when the FNN filter is used instead of the Wiener filter even when nonlinear noise is included. This is because the complex structure of the FNN filter expresses any type of nonlinear characteristics well.

Study on Oscillation Circuit Using CUJT and PUT Device for Application of MFSFET′s Neural Network (MFSFET의 신경회로망 응용을 위한 CUJT와 PUT 소자를 이용한 발진 회로에 관한 연구)

  • 강이구;장원준;장석민;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.55-58
    • /
    • 1998
  • Recently, neural networks with self-adaptability like human brain have attracted much attention. It is desirable for the neuron-function to be implemented by exclusive hardware system on account of huge quantity in calculation. We have proposed a novel neuro-device composed of a MFSFET(ferroelectric gate FET) and oscillation circuit with CUJT(complimentary unijuction transistor) and PUT(programmable unijuction transistor). However, it is difficult to preserve ferroelectricity on Si due to existence of interfacial traps and/or interdiffusion of the constitutent elements, although there are a few reports on good MFS devices. In this paper, we have simulated CUJT and PUT devices instead of fabricating them and composed oscillation circuit. Finally, we have resented, as an approach to the MFSFET neuron circuit, adaptive learning function and characterized the elementary operation properties of the pulse oscillation circuit.

  • PDF

A RAM-based Cumulative Neural Net with Adaptive Weights (적응적 가중치를 이용한 RAM 기반 누적 신경망)

  • Lee, Dong-Hyung;Kim, Seong-Jin;Gwon, Young-Chul;Lee, Soo-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.216-224
    • /
    • 2010
  • A RAM-based Neural Network(RNN) has the advantages of processing speed and hardware implementation. In spite of these advantages, it has a saturation problem, weakness of repeated learning and extract of a generalized pattern. To resolve these problems of RNN, the 3DNS model using cumulative multi discriminator was proposed. But that model does not solve the saturation problem yet. In this paper, we proposed a adaptive weight cumulative neural net(AWCNN) using the adaptive weight neuron (AWN) for solving the saturation problem. The proposed nets improved a recognition rate and the saturation problem of 3DNS. We experimented with the MNIST database of NIST without preprocessing. As a result of experimentations, the AWCNN was 1.5% higher than 3DNS in a recognition rate when all input patterns were used. The recognition rate using generalized patterns was similar to that using all input patterns.

A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture (적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구)

  • Oh, Sung-Kwun;Kim, Dong-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

Microscopic research on the olfactory organ of the Far Eastern brook lamprey Lethenteron reissneri (Pisces, Petromyzontidae)

  • Hyun-Tae Kim;Jong-Young Park
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.18.1-18.7
    • /
    • 2020
  • The olfactory anatomy and histology of Lethenteron reissneri were researched using a stereo microscope, a light microscope, and a scanning electron microscope. As in other lampreys, it shows same characters as follows: i) a single olfactory organ, ii) a single tubular nostril, iii) a single olfactory chamber with gourd-like form, iv) a nasal valve, v) a nasopharyngeal pouch, vi) a sensory epithelium (SE) of continuous distribution, vii) a supporting cells with numerous long cilia, viii) an accessory olfactory organ. However, the description of a pseudostratified columnar layer in the SE and Non SE is a first record, not reported in sea lamprey Petromyzon marinus. In particular, both 19 to 20 lamellae in number and olfactory receptor neuron's quarter ciliary length of the knob diameter differ from those of P. marinus. From these results, it might be considered that the olfactory organ of L. reissneri shows well adaptive structure of a primitive fish to slow flowing water with gravel, pebbles, and sand and a hiding habit into sand bottom at daytime. The lamellar number and neuron's ciliary length may be a meaningful taxonomic character for the class Petromyzonida.