• Title/Summary/Keyword: Adaptive immunity

Search Result 118, Processing Time 0.029 seconds

The Effect of Cordyceps militaris on Adaptive Immune Responses in DBA2 Mice Immunized with Influenza Vaccine (밀리타리스 동충하초(Cordyceps militaris)의 인플루엔자백신 적응면역에 미치는 영향)

  • Lee, Hwan Hee;Cho, Hyosun
    • YAKHAK HOEJI
    • /
    • v.59 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Cordyceps militaris has shown to have various pharmacological activities including an immune-modulatory effect. Previously, we reported that anti-influenza effect of C. militaris in DBA/2 mice was mediated by increased IL-12 and the activation of NK cells. In this study, we investigated the effect of C. militaris on adaptive immune responses using DBA2 mice immunized with influenza vaccine. To determine the effect of C. militaris on antigen presentation capability, we treated RAW 264.7 cells with various concentrations of ethanol extract of C. militaris, which showed a significant upregulation of CD86 (B7.2), CD284 (TLR4), CD40, H-2k (MHC I) and I-Ad (MHC II). To examine the direct effect of C. militaris on adaptive immune responses, we immunized DBA2 mice with influenza vaccine in presence or absence of C. militaris. After 2 or 4 weeks, influenza-specific T cell proliferation, HAI titers and IFN-${\gamma}$ production were measured in plasma or PBMCs isolated from animals. Influenza-specific T cell proliferation and HAI titers were not considerably increased in immunized mice in presence of C. militaris. However, the production of IFN-${\gamma}$ was much greater in immunized mice with C. militaris as adjuvant than only immunized mice.

Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses

  • Cheol Gyun Kim;Won Kyong Kim;Narae Kim;Young Jin Pyung;Da-Jeong Park;Jeong-Cheol Lee;Chong-Su Cho;Hyuk Chu;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.47.1-47.16
    • /
    • 2023
  • Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.

A Design of Adaptive Controller based on Immune System (면역시스템에 기반한 적응제어기 설계에 관한 연구)

  • Lee Kwon Soon;Lee Young Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1137-1147
    • /
    • 2004
  • In this paper, we proposed two types of adaptive control mechanism which is named HIA(Humoral Immune Algorithm) PID and CMIA(Cell-Mediated Immune Algorithm) controller based on biological immune system under engineering point of view. The HIA PID which has real time control scheme is focused on the humoral immunity and the latter which has the self-tuning mechanism is focused on the T-cell regulated immune response. To verify the performance of the proposed controller, some experiments for the control of AGV which is used for the port automation to carry container without human are performed. The experimental results for the control of steering and speed of an AGV system illustrate the effectiveness of the proposed control scheme. Moreover, in that results, proposed controllers have better performance than other conventional PID controller and intelligent control method which is the NN(neural network) PID controller.

An Image Data Compression Algorithm for a Home-Use Digital VCR Using SBC with Block-Adaptive Quantization (SBC와 블럭 적응 양자화를 이용한 가정용 디지탈 VCR 영상 압축 알고리듬)

  • 김주희;서정태;박용철;이제형;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.124-132
    • /
    • 1994
  • An image data compression method for a digital VCR must satisfy special requirements such as high speed playback. various edting capabilities and error concealment to provide immunity to tape dropouts. Taking these requirements requirements into consideration, this paper proposes a new interframe subband coding algorithm for a digital VCR. In the proposed method, continuous input images are fist partitioned into four frequency bands. The lowest frequency subband is coded with 3-D block adaptive quantization that removes the level redundancy within each level. The other higher frequency subbands are coded by an intraframe coding method using the property of the human visual system. To keep reasonable image quality in high speed palyback, a segment forming method in the frequency domaing is also proposed Computer simulation results demonstrate that the proposed algorithm has the potential of achieving virtually lossless compression in normal play and produces an image with less mosaic errors in high speed play.

  • PDF

Control of Grid-Connected Inverters Using Adaptive Repetitive and Proportional Resonant Schemes

  • Abusara, Mohammad A.;Sharkh, Suleiman M.;Zanchetta, Pericle
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.518-529
    • /
    • 2015
  • Repetitive and proportional-resonant controllers can effectively reject grid harmonics in grid-connected inverters because of their high gains at the fundamental frequency and the corresponding harmonics. However, the performances of these controllers can seriously deteriorate if the grid frequency deviates from its nominal value. Non-ideal proportional-resonant controllers provide better immunity to variations in grid frequency by widening resonant peaks at the expense of reducing the gains of the peaks, which reduces the effectiveness of the controller. This paper proposes a repetitive control scheme for grid-connected inverters that can track changes in grid frequencies and keep resonant peaks lined up with grid frequency harmonics. The proposed controller is implemented using a digital signal processor. Simulation and practical results are presented to demonstrate the controller capabilities. Results show that the performance of the proposed controller is superior to that of a proportional-resonant controller.

Generation of Tolerogenic Dendritic Cells and Their Therapeutic Applications

  • Seungbo Yoo;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.52-60
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that bridge innate and adaptive immune responses, thereby leading to immune activation. DCs have been known to recognize pathogen-associated molecular patterns such as lipopolysaccharides (LPS) and nucleic acids via their pattern recognition receptors, which trigger signaling of their maturation and effector functions. Furthermore, DCs take up and process antigens as a form of peptide loaded on the major histocompatibility complex (MHC) and present them to T cells, which are responsible for the adaptive immune response. Conversely, DCs can also play a role in inducing immune suppression under specific circumstances. From this perspective, the role of DCs is related to tolerance rather than immunity. Immunologists refer to these special DCs as tolerogenic DCs (tolDCs). However, the definition of tolDCs is controversial, and there is limited information on their development and characteristics. In this review, we discuss the current concept of tolDCs, cutting-edge methods for generating tolDCs in vitro, and future applications of tolDCs, including clinical use.

Effect of Water Extracts from Root of Taraxacum officinale on Innate and Adaptive Immune Responses in Mice (민들레 뿌리 물 추출물의 마우스 선천 및 획득 면역계에 미치는 효과)

  • Yoon, Taek-Joon
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.3
    • /
    • pp.275-282
    • /
    • 2008
  • Hot-water($100^{\circ}C$) and cold-water($4^{\circ}C$) extracts of Taraxacum officinale root were assessed for the effects of innate and adaptive immune responses in mice. Hot water extracts(TO-100) and cold water extracts(TO-4) did not affect the viability of macrophages at concentrations below to 18 mg/ml and 8 mg/ml, respectively. The thioglycollate-induced macrophages cultured with TO-100 and TO-4 produced a significantly higher quantity of various cytokines, such as IL-6 and IL-12, than those treated with medium. This shows that the extracts potently stimulated the innate immune response. When mice were subcutaneously immunized(sc) with OVA+FIA(Freund's incomplete adjuvant)-emulsified TO-100, TO-100 did not affect the production of IgE, but enhanced the production of IgG1, IgG2a and IgG2b. The culture supernatant obtained from the splenocytes of mice treated with OVA+FIA-emulsified TO-100 also evidenced elevated levels of both OVA-specific Th1-type(IFN-$\gamma$) and Th2-type cytokines(IL-4, IL-6 and IL-10). These results suggested that TO-100 can modulate the immune responses to allergens in mice.

Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.128-137
    • /
    • 2014
  • Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into $CD103^+$ conventional DCs (cDCs), $CD11b^+$ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and $CD11b^+$ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, $CD103^+$ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the $CD8^+$ T cell response against the invading virus. Lymphoid $CD8{\alpha}^+$ cDCs, which have a developmental relationship with $CD103^+$ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.

Steroid injections in pain management: influence on coronavirus disease 2019 vaccines

  • Hong, Sung Man;Park, Yeon Wook;Choi, Eun Joo
    • The Korean Journal of Pain
    • /
    • v.35 no.1
    • /
    • pp.14-21
    • /
    • 2022
  • The coronavirus disease 2019 (COVID-19) pandemic, which has been rampant since the end of 2019, has evidently affected pain management in clinical practice. Fortunately, a COVID-19 vaccination program is currently in progress worldwide. There is an ongoing discussion that pain management using steroid injections can decrease COVID-19 vaccine efficacy, although currently there is no direct evidence to support this statement. As such, the feeling of pain in patients is doubled in addition to the co-existing ill-effects of social isolation associated with the pandemic. Thus, in the COVID-19 era, it has become necessary that physicians be able to provide high quality pain management without negatively impacting COVID-19 vaccine efficacy. Steroids can alter the entire process involved in the generation of adaptive immunity after vaccination. The period of hypophysis-pituitary-adrenal axis suppression is known to be 1 to 4 weeks after steroid injection, and although the exact timing for peak efficacy of COVID-19 vaccines is slightly different for each vaccine, the average is approximately 2 weeks. It is suggested to avoid steroid injections for a total of 4 weeks (1 week before and after the two vaccine doses) for the double-shot vaccines, and for 2 weeks in total (1 week before and after vaccination) for a single-shot vaccine. This review focuses on the basic concepts of the various COVID-19 vaccines, the effect of steroid injections on vaccine efficacy, and suggestions regarding an appropriate interval between the administration of steroid injections and the COVID-19 vaccine.

Protection of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus (IHNV) by immunization with G gene's cytoplasmic and transmembrane region-deleted single-cycle IHNV

  • Jae Young, Kim;Jun Soung, Kwak;Hyoung Jun, Kim;Ki Hong, Kim
    • Journal of fish pathology
    • /
    • v.35 no.2
    • /
    • pp.157-165
    • /
    • 2022
  • Single-cycle viruses generated by reverse genetic technology are replication-incompetent viruses due to the elimination of gene(s) essential for viral replication, which provides a way to overcome the safety problem in attenuated viruses. Infectious hematopoietic necrosis virus (IHNV) is a major pathogen causing severe damage in cultured salmonid species. In the present study, we generated a single-cycle IHNV lacking the transmembrane and cytoplasmic domain in the G gene (rIHNV-GΔTM) and evaluated the prophylactic potential of rIHNV-GΔTM in rainbow trout (Oncorhynchus mykiss). To produce rIHNV-GΔTM, IHNV G protein-expressing Epithelioma papulosum cyprini (EPC) cells were established. However, as the efficiency of rIHNV-GΔTM production in EPC cell clones was not high, fish were immunized with a low-tittered single-cycle virus (1.5 × 102 PFU/fish). Despite the low dose, the single-cycle IHNV induced significant protection in rainbow trout against IHNV infection, suggesting high immunogenicity of rIHNV-GΔTM. No significant difference in serum ELISA titers against IHNV between the rIHNV-GΔTM immunized group and the control group suggests that the immunized dose of rIHNV-GΔTM might be too low to induce significant humoral adaptive immune responses in rainbow trout. The involvement of adaptive cellular immunity or innate immunity in the present significantly higher protection by the immunization with rIHNV-GΔTM should be further investigated to know the protection mechanism.