• Title/Summary/Keyword: Adaptive Wall

Search Result 46, Processing Time 0.043 seconds

Numerical Investigation for the Optimization of Two-Dimensional Adaptive Wall (2차원 적응벽면의 최적화에 관한 수치적 연구)

  • Chang B. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.134-141
    • /
    • 1996
  • Wall interference is one of the major obstacles to increase the model size and data accuracy. There have been many treatments for wall interference including interference correction and adaptive wall test section. Recently, two-flexible-walled adaptive wall test section is concluded adequate for three-dimensional test. But proper location of target line and pressure holes are critical to its success. In this study, a new adaptive algorithm which dispenses target line and dependency of pressure hole distribution is suggested. The wind tunnel and free air tests are simulated by the numerical computation of Euler equations. The optimum wall shape is achieved by two variable optimization which is composed of two base streamlines. The wall interference is reduced well in the optimized result which is not sensitive to the base streamlines.

  • PDF

Numerical Investigation of the Unsteady Adaptive Wall Models in the Unsteady Wind Tunnel Testing (비정상유동 실험시의 비정상 적응벽면 모델의 수치적 연구)

  • Chang Byeong-Hee;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.219-224
    • /
    • 1995
  • The adaptive wall test section has distinct advantage over the other devices for reduction of wall interference in the wind tunnel testing. For two-dimensional steady flows the wall adaption strategy has been well established and, in some extent, has been effectively applied to three-dimensional steady flows. For unsteady testing, the wall adaptation is conceptually possible but has never been realized in the wind tunnel experiment. In this study, relatively simple adaptive wall models have been proposed and evaluated through numerical tests. The effect of Mach number, frequency, and amplitude of pitching oscillation on the wall interference reduction has been also studied.

  • PDF

A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation

  • Xiang, Yuzhou;Goh, Anthony Teck Chee;Zhang, Wengang;Zhang, Runhong
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.315-324
    • /
    • 2018
  • With rapid economic growth, numerous deep excavation projects for high-rise buildings and subway transportation networks have been constructed in the past two decades. Deep excavations particularly in thick deposits of soft clay may cause excessive ground movements and thus result in potential damage to adjacent buildings and supporting utilities. Extensive plane strain finite element analyses considering small strain effect have been carried out to examine the wall deflections for excavations in soft clay deposits supported by diaphragm walls and bracings. The excavation geometrical parameters, soil strength and stiffness properties, soil unit weight, the strut stiffness and wall stiffness were varied to study the wall deflection behaviour. Based on these results, a multivariate adaptive regression splines model was developed for estimating the maximum wall deflection. Parametric analyses were also performed to investigate the influence of the various design variables on wall deflections.

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang;Zhang, Runhong;Goh, Anthony. T.C.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.577-588
    • /
    • 2018
  • A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

Design of an Adaptive Robust Nonlinear Predictive Controller (적응성을 가진 강인한 비선형 예측제어기 설계)

  • Park, Gee--Yong;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.967-972
    • /
    • 2001
  • In this paper, an adaptive robust nonlinear predictive controller is developed for the continuous time nonlinear systems whose control objective is composed of the system output and its desired value. The basic control law is derived from the continuous time prediction model and its feedback dynamcis shows another from if input and output linearization. In order to cope with the parameter uncertainty, robust control is incorporated into the basic control law and the asymptotic convergence of tracking error to a certain bounded region is guaranteed. For stability and performance improvement within the bounded region, an adaptive control is introduced. Simulation tests for the motion control of an underwater wall-ranging robot confirm the performance improvement and the robustness of this controller.

  • PDF

Seismic Assessment of Plan-irregular Wall Structures using Adaptive Modal Analysis (수정 모드해석방법을 이용한 비대칭 벽식 구조물의 내진성능평가)

  • Ha, Tae-Hyu;Hong, Sung-Gul
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.589-596
    • /
    • 2006
  • Torsional behavior of eccentric structures under seismic loading may cause stress and/or strain concentration, which result in the failure of the structures in an unexpected manner. This study propose how to assess the seismic capacity of plan-irregular RC wall structures. The seismic capacities ate expressed in terms of lateral displacement capacity of each wall. The seismic demands for displacement are assessed by so called displacement-based design approach. Those seismic capacity and demands are combined D-R coordinate, which is made up of lateral displacement and rotation angle. To expand these concepts to the inelastic region the adaptive modal analysis method is used. In addition, the failure mechanisms including torsional failure are defined on D-R coordinate. Finally, seismic assessments of two 3-story plan-irregular wall structures ate presented.

  • PDF

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

A numerical study on the characteristics of flame propagation in small tubes under various boundary conditions (벽면조건에 의한 미소관내 화염 전파 특성 변화에 관한 수치해석)

  • Kim, Nam-Il;Maruta, Kaoru
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.32-38
    • /
    • 2006
  • A premixed flame propagating in a tube suffers strong variation in its shape and structure depending on boundary conditions. The effects of thermal boundary conditions and flow fields on flame propagation are numerically investigated. Navier-Stokes equations and species equations are solved with a one-step irreversible global reaction model of methane-air mixture. Finite volume method using an adaptive grid method is applied to investigate the flame structure. In the case of an adiabatic wall, friction force on the wall significantly affected the flame structure while in the case of an isothermal wall, local quenching near the wall dominated flame shapes and propagation. In both cases, variations of flow fields occurred not only in the near field of the flame but also within the flame itself, which affected propagation velocities. This study provides an overview of the characteristics of flames in small tubes at a steady state.

  • PDF

Adaptive Tracking Control of Two-Wheeled Welding Mobile Robot with Smooth Curved Welding Path

  • Bui, Trong-Hieu;Chung, Tan-Lam;Kim, Sang-Bong;Nguyen, Tan-Tien
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1682-1692
    • /
    • 2003
  • This paper proposes an adaptive controller for partially known system and applies to a two-wheeled Welding Mobile Robot (WMR) to track a reference welding path at a constant velocity of the welding point. To design the tracking controller, the errors from WMR to steel wall is defined, and the controller is designed to drive the errors to zero as fast as desired. Additionally, a scheme of error measurement is implemented on the WMR to meet the need of the controller. In this paper, the system moments of inertia are considered to be partially unknown parameters which are estimated using update laws in adaptive control scheme. The simulations and experiments on a welding mobile robot show the effectiveness of the proposed controller.

Robust Controller with Adaptation within the Boundary Layer Application to Nuclear Underwater Inspection Robot

  • Park, Gee-Yong;Yoon, Ji-Sup;Hong, Dong-Hee;Jeong, Jae-Hoo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • In this paper, the robust control scheme with the improved control performance within the boundary layer is proposed. In the control scheme, the robust controller based on the traditional variable structure control method is modified to have the adaptation within the boundary layer. From this controller, the width of the boundary layer where the robust control input is smoothened out can be given by an appropriate value. But the improved control performance within the boundary layer can be achieved without the so-called control chattering because the role of adaptive control is to compensate for the uncovered portions of the robust control occurred from the continuous approximation within the boundary layer Simulation tests for circular navigation of an underwater wall-ranging robot developed for inspection of wall surfaces in the research reactor, TRIGA MARK III, confirm the performance improvement. Notational Conventions Vectors are written in boldface roman lower-case letters, e.g., x and y. Matrices are written in upper-case roman letters, e.g., G and B. And ∥.∥ means the Euclidean norm.