• Title/Summary/Keyword: Adaptive Robust Control

Search Result 537, Processing Time 0.03 seconds

Robust Output Regulator with Frequency Adaptation Algorithm for Optical Disc Drives (광디스크를 위한 주파수 적응 알고리즘과 함께하는 강인 출력 제어기)

  • Kim, Sang-Hyun;Kim, Hyung-Jong;Shim, Hyung-Bo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.17-24
    • /
    • 2011
  • This paper presents a control scheme to cancel periodic disturbance with unknown frequency for optical disc drives. The control scheme consists of an output regulator and a frequency adaptive algorithm. Here, the frequency adaptive algorithm based on IMP plays a role in obtaining a frequency of periodic disturbance. The stability analysis of whole system and disturbance rejection performance are proven by the singular perturbation theory. The contribution of this paper are as follows. (1) There is no design constraints of the frequency range. (2) Ability for perfect disturbance rejection is preserved even with uncertain plant model.

Sliding Mode Control of Induction Motors Using an Adaptive Sliding Mode Flux Observer (적응 슬라이딩모드 자속 관측기를 이용한 인덕션 모터의 슬라이딩 모드 제어)

  • Kim, Do-Woo;Chung, Ki-chull;Lee, Seng-Hak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.587-594
    • /
    • 2005
  • An adaptive observer for rotor resistance is designed to estimate rotor flux for the a-b model of an induction motor assuming that rotor speed and stator currents are measurable. A singularly perturbed model of the motor is used to design an Adaptive sliding mode observer which drives the estimated stator currents to their true values in the fast time scale. The adaptive observer on the sliding surface is based on the equivalent switching vector and both the estimated fluxes and the estimated rotor resistance converge to their true values. A speed controller considering the effects of parameter variations and external disturbance is proposed in this paper. First, induction motor dynamic model at nominal case is estimated. based on the estimated model, speed controller is designed to match the prescribed speed tracking specifications. Then a dead-time compensator and a robust controller are designed to reduce the effects of parameter variations and external disturbances. the desired speed tracking control performance can be preserved under wide operating range, and good speed load regulating performance. Some simulated results are provided to demonstrate the effectiveness of the Proposed controller.

Local stereo matching using combined matching cost and adaptive cost aggregation

  • Zhu, Shiping;Li, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.224-241
    • /
    • 2015
  • Multiview plus depth (MVD) videos are widely used in free-viewpoint TV systems. The best-known technique to determine depth information is based on stereo vision. In this paper, we propose a novel local stereo matching algorithm which is radiometric invariant. The key idea is to use a combined matching cost of intensity and gradient based similarity measure. In addition, we realize an adaptive cost aggregation scheme by constructing an adaptive support window for each pixel, which can solve the boundary and low texture problems. In the disparity refinement process, we propose a four-step post-processing technique to handle outliers and occlusions. Moreover, we conduct stereo reconstruction tests to verify the performance of the algorithm more intuitively. Experimental results show that the proposed method is effective and robust against local radiometric distortion. It has an average error of 5.93% on the Middlebury benchmark and is compatible to the state-of-art local methods.

Design of an RBFN-based Adaptive Tracking Controller for an Uncertain Mobile Robot (불확실한 이동 로봇에 대한 RBFN 기반 적응 추종 제어기의 설계)

  • Shin, Jin-Ho;Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1238-1245
    • /
    • 2014
  • This paper proposes an RBFN-based adaptive tracking controller for an electrically driven mobile robot with parametric uncertainties and external disturbances. A mobile robot model considered in this paper includes all models of the robot body and actuators with uncertain kinematic and dynamic parameters, and uncertain frictions and external disturbances. The proposed controller consists of an RBFN(Radial Basis Function Network) and a robust adaptive controller. The presented RBFN is used to approximate unknown nonlinear robot dynamic functions. The proposed controller is adjusted by the adaptation laws obtained through the Lyapunov stability analysis. The proposed control scheme does not a priori need the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. Also, nominal parameter values are not required in the controller. The global stability of the closed-loop robot control system is guaranteed using the Lyapunov stability theory. Simulation results show the validity and robustness of the proposed control scheme.

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

On the Robust Adaptive Sliding Mode Control of Robot Manipulators (로봇 매니퓨레이터의 강건한 적응 슬라이딩 모드제어)

  • Bae, Jun-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.6
    • /
    • pp.28-36
    • /
    • 2001
  • A robust adaptive sliding mode robot control algorithm is derived, which consists of a feed-forward compensation part and discontinuous control part. The unknown parameters is categorized into two groups, with group containing the parameters estimated on-line, and group containing the parameters not estimated on-line. Then a sliding control term is incorporated into the torque input in order to account for the effects of uncertainties on the parameters not estimated on-line and of disturbances. Moreover, the algorithm is computationally simple, due to an effective exploitation of the structure of manipulator dynamics. It is shown that, despite the existence of the parameter uncertainty and external disturbances, the controller is globally asymptotically stable and guarantees zero tracking errors.

  • PDF

Cornering Stability Control of a Personal Electric Vehicle with Direct-Drive In-Wheel Motors (직접구동 인 휠 모터를 장착한 1인승 전기자동차의 선회안정성제어)

  • Nam, Kanghyun;Eum, Sangjune
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.919-924
    • /
    • 2016
  • This paper proposes a robust control design method for improving the cornering stability of a personal electric vehicle equipped with in-wheel motors. In general, vehicles undergo severe parameter variations and unpredictable disturbances with respect to a wide range of driving conditions (e.g., road surface conditions and vehicle velocity conditions). For this reason, robust control design techniques are required to guarantee consistent driving performances and robustness against various driving conditions. In this paper, an adaptive sliding mode control method is employed to enhance cornering stability by controlling the direct-drive in-wheel motors independently. Additionally, in order to confirm the effectiveness of a proposed control method, real driving tests with an experimental personal electric vehicle are performed.

An implementation of the speed controller for DC servomotor using adaptive control algorithm and 80286 $\mu$-processor (적응제어 알고리즘과 80286 마이크로 프로세서를 이용한 DC 서보모터의 강인한 속도제어기의 구현)

  • Kim, Joong-Suk;Yi, Keon-Young;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.353-356
    • /
    • 1991
  • This paper proposes a robust direct adaptive control system implementation using a 80286 microprocessor-based system for controlling the speed of a DC servo motor. In this paper, assuming that the unmodeled dynamics of the plant are sufficiently small in the low-frequency range, the plant as linear time-invariant system is the second relative degree, we construct the direct adaptive control system with the algorithm considering plant unmodeled dynamics and execute the experiment, and compare the characteristics with those of PI algorithm's. It shows that an easy implementation of the built controller is due to the usage of software for the algorithm.

  • PDF

Design of Adaptive Regulator for a Nonlinear Uncertain System (불확실성을 갖는 비선형 시스템의 적응 제어기 설계)

  • Jin, Ju-Wha;Yu, Kyung-Tak;Son, Young-Ik;Seo, Jin-Heo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.153-158
    • /
    • 1999
  • We consider single-input nonlinear systems with unknown unmodelled time-varying parameters or disturbances which are bounded. The main goal is to identify classes of uncertain systems for which the control exist and to provide constructive design procedures. Assuming that the undisturbed nominal system ( ,g) is partially state feedback linearizable, that a strict triangularity condition, a linear parametrization condition, and {{{{ { G}_{r-1 } }}}} hold for the uncertain terms, and that some condition is satisfied in the transformed partially linear system, we design an adaptive regulating dynamic control. At first, we identify classes of nonlinear uncertain systems and give a systematic procedure for the design of a robust regulation for the nonlinear systems.

  • PDF