• Title/Summary/Keyword: Adaptive Robust Control

Search Result 537, Processing Time 0.029 seconds

Adaptive Feed-forward Control with Reference Model for Position Controller (기준모델과 피드포워드 적응제어를 사용한 위치제어기)

  • 윤명하;최남열;이치환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.413-418
    • /
    • 2002
  • This paper proposed a feed-forward adaptive position controller that is robust for variable Inertia. The control system consists of PI Position controller, feed-forward and model reference adaptive control. A parameter g(t) of the feed-forward adaptive position controller is adapted by using both the reference model speed and position error. So it improves the transient response and reduces the settling time. And normalization function Is used to make linear adaptation time. The validity of the feed-forward adaptive controller is confirmed by simulation results.

Sensorless Self-Tuning Adaptive Control of Nonlinear Modeled DC Motors Using DSP (DSP를 이용한 비선형 모델을 갖는 직류 전동기의 센서없는 자기동조 적응제어)

  • 김윤호;국윤상;유연식
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.49-56
    • /
    • 1995
  • In this study, self-tuning adaptive control using state observer is developed. Self-tuning adaptive controller that estimates the parameters of the system in real time and generates the optimal control signals has robust characteristic about varying load and external disturbances. In addition, state observer without sensors is applied, thus the control can be performed more quickly and exactly. Since chopper is used commonly in practical drives, the characteristics of the chopper are included in state observer algorithm, which, in turn, makes the system exact estimation. Since series type DC motor has nonlinear models, linearizing approach are investigated. to realize the proposed algorithm it requires fast calculation in real time. TMS320C31, digital signal processor, is applied to realized the adaptive control algorithms.

  • PDF

A Design of Robust Adaptive Control Systems of Robot Arms for conveyor Tracking (컨베이어 추적을 위한 로보트 팔의 강인한 적응 제어계 설계)

  • 엄기환;손동설;김주홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.11
    • /
    • pp.945-954
    • /
    • 1990
  • In this paper, we presents a robust adaptive control system design method in the work coordinate of the robot arm for conveyor tracking. In the design, if the weighting function $L_K$ is smaller than the design parameter then the transient characteristics of system becomes stable, if $L_K$ is larger than then the system becomes unstable. Proposed design method presented here is based on model referenece adaptive control and Popov stability theorem. By the utiliza/tion of an auxilary input, it is improved the transent characteristics of the system in comparison with the conventional model reference adptive control, since the rate of V and V(t) is large. The usefulness of a proposed design method has been confirmed by computer simulations.

  • PDF

Robust Sliding Mode Friction Control with Adaptive Friction Observer and Recurrent Fuzzy Neural Network

  • Shin, Kyoo-Jae;Han, Seong-I.
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.125-130
    • /
    • 2009
  • A robust friction compensation scheme is proposed in this paper. The recurrent fuzzy neural network and friction parameter observer are developed with sliding mode based controller in order to obtain precise position tracking performance. For a servo system with incomplete identified friction parameters, a proposed control scheme provides a satisfactory result via some experiment.

A study on robust adaptive controller for processes with variable time-delays (시변 지연 시간을 갖는 프로세스의 로버스트 적응제어기에 관한 연구)

  • 강문식;전종암;이상배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.185-189
    • /
    • 1987
  • The controller with robustness described in this paper is designed for processes with variable time-delays. This adaptive mechanism includes servo and stabilizing compensators. In the proposed multivariable controller. knowledge of the system time-delay is not required.

  • PDF

A Novel Robust Adaptive Control Algorithm for Systems with Unknown Disturbances (미지의 외란을 가지는 시스템의 새로운 형태의 적응 제어 알고리즘)

  • Koo, Keun-Mo;Jeon, Jeong-Yeol;Kim, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.371-373
    • /
    • 1992
  • This note proposes a novel robust adaptive control algorithm for systems with unknown disturbances by introducing an additional term in the control input. This additional term is easily implementable by estimating the upper bound of the unknown disturbances. By this term, the output error can be made to be uniformly ultimately bounded in a desired region via Lyapunov second stability theorem when the relative degree of system is one.

  • PDF

Adaptive control based on nonlinear dynamical system

  • Sugisaka, Masanori;Eguchi, Katsumasa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.401-405
    • /
    • 1993
  • This paper presents a neuro adaptive control method for nonlinear dynamical systems based on artificial neural network systems. The proposed neuro adaptive controller consists of 3 layers artificial neural network system and parallel PD controller. At the early stage in learning or identification process of the system characteristics the PD controller works mainly in order to compensate for the inadequacy of the learning process and then gradually the neuro contrller begins to work instead of the PD controller after the learning process has proceeded. From the simulation studies the neuro adaptive controller is seen to be robust and works effectively for nonlinear dynamical systems from a practical applicational points of view.

  • PDF

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).

Robust Fault-Tolerant Control for Robotic Systems

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.513-518
    • /
    • 1998
  • In this paper, a robust fault-tolerant control scheme for robot manipulators overcoming actuator failures is presented. The joint(or actuator) fault considered in this paper is the free-swinging joint failure and causes the loss of torque on a joint. The presented fault-tolerant control framework includes a normal control with normal(non-failed) operation, a fault detection and a fault-tolerant control to achieve task completion. For both no uncertainty case and uncertainty case, a stable normal con-troller and an on-line fault detection scheme are presented. After the detection and identification of joint failures, the robot manipulator becomes the underactuated robot system with failed actuators. A robust adaptive control scheme of robot manipulators with the detected failed-actuators using the brakes equipped at the failed(passive) joints is proposed in the presence of parametric uncertainty and external disturbances. To illustrate the feasibility and validity of the proposed fault-tolerant control scheme, simulation results for a three-link planar robot arm with a failed joint are presented.

  • PDF

Design of robust stable hybrid controllers for active noise/vibration control (능동 소음 및 진동 제어에 사용되는 강인안정한 하이브리드 제어기의 설계)

  • Oh, Shi-Hwan;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.431-436
    • /
    • 2000
  • Adaptive feed forward control algorithms based largely upon LMS approach have developed in recent two decades, and they have been widely applied to practical sound and vibration control problems in the case of the reference signal is available. Feedforward control can be applied only when reference signals can be measured or regenerated, while feedback controllers are used to reduce; sound and vibration when reference signals are not available. In recent years, hybrid control schemes in which adaptive feed forward controllers are combined with feedback ones have been studied based on simulations and experiments. The results have shown that the hybrid control may have better control performances in convergence speed and steady state error than the single control schemes. Hybrid control has the advantages of improving stability and performance as well as the disturbance rejection property. However, little effort has been made to the analysis or interpretation of hybrid control systems. In this study, we discussed the feedback controller effects on the stability of feed forward control algorithm in the presence of uncertain error path and a simple example showed that a stable feedback controller could make the feedforward controller unstable. A design criterion of feedback controllers is proposed in order to guarantee the stability of feedforward algorithms in the presence of error paths with uncertainties.

  • PDF