The cloud environment need resource management method that to enable the big data issue and data analysis technology. Existing resource management uses the limited calculation method, therefore concentrated the resource bias problem. To solve this problem, the resource management requires the learning-based scheduling using resource history information. In this paper, we proposes the ART (Adaptive Resonance Theory)-based adaptive resource management. Our proposed method assigns the job to the suitable method with the resource monitoring and history management in cloud computing environment. The proposed method utilizes the unsupervised learning method. Our goal is to improve the data processing and service stability with the adaptive resource management. The propose method allow the systematic management, and utilize the available resource efficiently.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.12
/
pp.2294-2314
/
2011
The key issue in providing fast and reliable access on cloud services is the effective management of resources in a cloud system. However, the high variation in cloud service access rates affects the system performance considerably when there are no default routines to handle this type of occurrence. Adaptive techniques are used in resource management to support robust systems and maintain well-balanced loads within the servers. This paper presents an adaptive resource management for cloud systems which supports the integration of intelligent methods to promote quality of service (QoS) in provisioning of cloud services. A technique of dynamically assigning cloud services to a group of cloud servers is proposed for the adaptive resource management. Initially, cloud services are collected based on the excess cloud services load and then these are deployed to the assigned cloud servers. The assignment function uses the proposed proportional ordering which efficiently assigns cloud services based on its resource consumption. The difference in resource consumption rate in all nodes is analyzed periodically which decides the execution of service assignment. Performance evaluation showed that the proposed dynamic service assignment (DSA) performed best in throughput performance compared to other resource allocation algorithms.
Shtuler, Iryna;Zabarna, Eleonora;Kyrlyk, Nataliya;Kostovyat, Hanna
International Journal of Computer Science & Network Security
/
v.21
no.12
/
pp.110-116
/
2021
The article focuses on the need to deepen the issue of human resource management in logistics processes. It is noted that changes in market conditions and turbulence in the institutional environment require managers to form a highly effective human resources policy capable to ensure the innovative development of the enterprise. Functional strategies for human resource management in logistical processes are proposed, namely: adaptive, innovative, selective and exclusive. Innovative technologies that should be used in the adaptive human resources policy process are identified.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.10
/
pp.2382-2388
/
2014
To provide network reliability in indoor wireless communication systems, we should resolve the problem of unexpected network failure rapidly. In this paper, we propose an adaptive resource management (ARM) scheme to support seamless connectivity to users. In consideration of system throughput and user fairness simultaneously, the ARM scheme adaptively determines the set of healing channels, and performs scheduling and power allocation iteratively based on a constrained non-convex optimization technique. Through intensive simulations, we demonstrate the superior performance results of the proposed ARM scheme in terms of the average cell capacity and user fairness.
The recent Covid-19 outbreak has caused severe disruption of the global supply chain, which tests firms' ability to survive and build resilience. The concept of adaptive supply chain management (A-SCM) has never been tested against a severe supply chain disruption, such as a pandemic. Purpose: The aim of this study is to examine how firms in Indonesia develop resilience through the implementation of components of adaptive supply chain management, namely risk management, resource reconfiguration and supply chain flexibility, in order to survive severe supply chain disruption. Research design, data and methodology: A qualitative method and PLS-SEM were used to analyze 120 data collected from Indonesian manufacturing firms in various industries. Results: The findings show that risk management, resource reconfiguration, and supply chain flexibility are important components that make up A-SCM. However, only risk management contributes to help build firm resilience in the presence of severe supply chain disruption. Conclusions: The components of A-SCM have been empirically tested. The implication is that managers should carefully use RM to prepare firms for different scenarios to develop contingency strategies. This research contributes to the supply chain management body of knowledge in the context of pandemic-level disruption and broadens the dynamic capabilities perspective.
Kim, Woo Chan;Lee, Haeho;Ahn, Myonghwan;Lee, Bum Jik;Song, Taek Lyul
Journal of Institute of Control, Robotics and Systems
/
v.22
no.7
/
pp.536-542
/
2016
To enhance tracking efficiency, a target-tracking filter with a resource management algorithm is required. One of the resource management algorithms chooses or evaluates the proper sampling time using cost functions which are related to the target tracking filter. We propose a resource management algorithm for bearing only tracking environments. Since the tracking performance depends on the system observability, the bearing-only tracking is one of challenging target-tracking fields. The proposed algorithm provides the adaptive sampling time using the variation rate of the error covariance matrix from the target-tracking filter. The simulation verifies the efficiency performance of the proposed algorithm.
Park, Young Cheol;Yoo, Jae Won;Jeong, Su-young;Oh, Tae-Geon;Kim, Jong Ryol;Choe, Mi Kyung;Choi, Ok-in
Journal of Wetlands Research
/
v.21
no.4
/
pp.267-280
/
2019
Adaptive Management (AM) is one of the best available approaches for managing natural resources in the presence of uncertainty. In spite of the limitations, AM has been widely applied in nature resource management policies and plans internationally, while application of AM in nature resource management in Korea is limitedly used. Accordingly, this study reviews application of AM in nature resource management research in Korea with respect to its definitions, procedures, impediments and considerations. The present study also reviews recent ecological modelling studies which is an essential component of AM approach. Finally, management of artificial sea forest, coastal wetlands and fisheries are suggested as the recommended fields to adopt AM.
As global climate change is expected to influence regional water resources, water resource managers need to establish adaptive management to cope with climate change. We examined adaptive management efforts in the US, UK, Canada, Australia, and the Netherlands. Each country is implementing different levels of adaptation efforts based on current water management practices, institutional arrangements, as well as the varying degree of water availability, current climate effects and expected climate change effects. Based on the comparison of these countries, we suggest policy implications for the sustainable water resource management of Korea under climate changes.
Journal of the Korea Society of Computer and Information
/
v.14
no.8
/
pp.81-88
/
2009
Many studies and policies are suggested for customer satisfaction to survive in multimedia content service markets. there are policies like a segregating the clients using the contents service and allocating the media server's resources distinctively by clusters using the cluster analysis method of CRM. The problem of this policy is fixed allocation of media server resources. It is inefficient for costly media server resource. To resolve the problem and enhance the utilization of media server resource, the ACRFA (Adaptive Client Request Filtering Algorithm) was suggested per cluster to allocate media server resources by flexible resource allocation method.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.11
/
pp.3584-3602
/
2022
NFV realizes flexible and rapid software deployment and management of network functions in the cloud network, and provides network services in the form of chained virtual network functions (VNFs). However, using VNFs to provide quality guaranteed services is still a challenge because of the inherent difficulty in intelligently scaling VNFs to handle traffic fluctuations. Most existing works scale VNFs with fixed-capacity instances, that is they take instances of the same size and determine a suitable deployment location without considering the cloud network resource distribution. This paper proposes a traffic forecasted assisted proactive VNF scaling approach, and it adopts the instance capacity adaptive to the node resource. We first model the VNF scaling as integer quadratic programming and then propose a proactive adaptive VNF scaling (PAVS) approach. The approach employs an efficient traffic forecasting method based on LSTM to predict the upcoming traffic demands. With the obtained traffic demands, we design a resource-aware new VNF instance deployment algorithm to scale out under-provisioning VNFs and a redundant VNF instance management mechanism to scale in over-provisioning VNFs. Trace-driven simulation demonstrates that our proposed approach can respond to traffic fluctuation in advance and reduce the total cost significantly.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.