
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2294 

Copyright ⓒ 2011 KSII 

This research is supported by Industry and University Research Consortium of Small and Medium Business 

Administration (SMBA) of 2011. 

 

DOI: 10.3837/ tiis.2011.12.002 

Dynamic Service Assignment based on 
Proportional Ordering for the Adaptive 

Resource Management of Cloud Systems 
 

Romeo Mark A. Mateo and Jaewan Lee 
School of Electronics and Information Engineering, Kunsan National University 

Daehak-Ro 558, Gunsan, Jeonbuk, South Korea 573-701 

[e-mail: {rmmateo, jwlee}@kunsan.ac.kr] 

 *Corresponding author: Jaewan Lee 

 

Received April 8, 2011; revised July 9, 2011; revised September 8, 2011; accepted November 19, 2011; 

published December 31, 2011 

 

 

Abstract 
 

The key issue in providing fast and reliable access on cloud services is the effective 

management of resources in a cloud system. However, the high variation in cloud service 

access rates affects the system performance considerably when there are no default routines to 

handle this type of occurrence. Adaptive techniques are used in resource management to 

support robust systems and maintain well-balanced loads within the servers. This paper 

presents an adaptive resource management for cloud systems which supports the integration of 

intelligent methods to promote quality of service (QoS) in provisioning of cloud services. A 

technique of dynamically assigning cloud services to a group of cloud servers is proposed for 

the adaptive resource management. Initially, cloud services are collected based on the excess 

cloud services load and then these are deployed to the assigned cloud servers. The assignment 

function uses the proposed proportional ordering which efficiently assigns cloud services 

based on its resource consumption. The difference in resource consumption rate in all nodes is 

analyzed periodically which decides the execution of service assignment. Performance 

evaluation showed that the proposed dynamic service assignment (DSA) performed best in 

throughput performance compared to other resource allocation algorithms. 

 
 

Keywords: Cloud computing, resource allocation, migration, load balancing, adaptive 

system 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2295 

1. Introduction 

The Cloud has emerged recently as a new computing paradigm for provisioning of 

application services and computational resources via the Internet, in which, it offers an 

efficient way to share resources within organizations and promote business strategy. 

Application solutions in the Cloud, social network services [1] and cloud infrastructures [2] 

are popularly used as tools by business establishments to provide complete applications for 

employees and to improve collaboration with their business partners. Small business can also 

benefit from using cloud computing by not having the need of deploying physical 

infrastructure like file servers, e-mail servers, storage systems or computational resources. 

Currently, various application services and development trends in the Cloud are rapidly 

increasing [3], at the same time, improvements in the system infrastructure follow [4][5]. The 

first successful resource provider based on utility computing is the Amazon Elastic Compute 

Cloud (Amazon EC2) [2]. In response to the highly competitive trend, Google and Microsoft 

introduced the Google App Engine [6] and Microsoft Azure Services [7], respectively, which 

allowed application developers to program advance applications from existing provisioned 

web services. Research projects in [8][9] focus on large implementation of cloud systems. 

These and other cloud systems are required to be highly reliable, scalable, and autonomic to 

support ubiquitous access and dynamic discovery in able to operate successfully. 

Services offered in the Cloud are expected to meet quality of service (QoS) requirements of 

customers. In the system architect view, the proper interaction from components of a cloud 

system is considered in providing QoS. Although there are various cloud architectures that 

demonstrate QoS, these designs share the same goal of virtualization, which is to provide users 

with simple access and reliable connection to resources or services. In [10][11], variables and 

methods for virtualization are studied which can be used to provide an efficient resource 

allocation. Resource management performs a significant role in hiding complex interaction of 

a distributed system while resources or services are transparently provisioned. Moreover, 

adaptive schemes in resource management are introduced by researches to improve resource 

utilization [12][13]. Intelligent distributed frameworks are proposed in [14][15] to integrate a 

large and complex distributed system with intelligent algorithms to be aware of service 

demand patterns and to determine the need for replication of services that leads to a responsive 

system [15]. The information from service demand patterns can be used to adjust the resource 

allocation of cloud servers by predicting the trends of client demands for services and 

producing more services to meet future demands. Therefore, the motivation of this study is the 

integration of intelligent algorithms in a cloud system to promote adaptive techniques in 

providing the QoS. 

This paper presents a cloud system which utilizes intelligent methods in provisioning of 

software services and managing server resources. The proposed cloud architecture uses a SaaS 

model in delivering its cloud application services. The objectives of the proposed cloud 

architecture are as follows. 

 To provide automation of service and resource provisioning using agents. 

 To provide a classification method for search of cloud services and for efficient 

collaboration of cloud service providers. 

 To provide adaptive schemes in the resource management of cloud servers. 

In order to provide efficient resource allocation for responsive services, a dynamic service 

assignment is proposed. The proposed algorithm, which uses proportional ordering, handles 



2296         Mateo et al.: Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management 

the loads of cloud servers by assigning cloud services to cloud servers considering the equal 

resource consumption in all cloud servers. The service assignment is executed based on the 

variation of resource consumption rates in all nodes. Similar to a migration technique, the 

proposed algorithm relocates application services to the selected cloud servers. However, the 

service assignment is triggered by a periodic analysis of resource consumption rate variation, 

where the execution is not as frequent as in a migration scheme. To verify the efficiency of the 

proposed algorithm, conventional resource allocation techniques were compared by 

performances in message latencies and turn-around time of requests. 

2. Related Work 

2.1 Software-as-a-Service 

Software-as-a-Service (SaaS) is a shift from software products to services [16], and nowadays, 

is popularly used to support business operations. SaaS is a delivery model for software 

applications using Internet as its medium which is designed for flexibility to both providers 

and customers [17]. On the customer side, SaaS eliminates complex configurations and 

time-consuming installations. A cloud service consumer only needs, at least, a standard web 

browser to access software applications. On the provider side, SaaS enables reuse of software 

applications and supports many clients using a common infrastructure. A study in [18] shows 

that open, modulated, and standardized software takes a significant market share compared to 

the traditional commercial off-the-shelf (COTS) solutions. With SaaS, providers can easily 

collect detailed information about defects, performance and usage trends to improve their 

services. Well-known research topics in SaaS are negotiations [19][20], search method [21] 

and load balancing [22][23]. Providing optimal negotiations in the Cloud promotes effective 

service provisioning. Developers and researchers are continuing to introduce more solutions 

for business such as using social networks for customer relationship management (CRM) [1], 

and extending their application solutions in the Platform-as-a-Service (PaaS) model. PaaS 

provides a complete development and hosting platform for applications delivered as a service 

like in [6][7] which enables the service providers or business owners to develop and 

implement their own solutions. Similar to SaaS, PaaS virtualizes the available resources to run 

in the Cloud. Consequently, the provisioning of software applications is dependent on the 

interactions of components in the resource management. Thus, the techniques in resource 

management for efficient and robust access to services are considered to provide QoS. Job 

requests will be delayed if there are many clients accessing a service in a cloud server. 

Dynamic replication of services is proposed in [22] to support the increase of service demands 

from cloud consumers. However, the replication scheme does not consider high variation of 

loads in cloud servers from a case where some nodes have very high access rate because of 

popular services and, in contrast, some nodes are not utilized because of less frequent accessed 

services. 

2.2 Resource Allocation and Migration 

Resource allocation and task management are key factors in providing a robust service system 

which are well researched topics of distributed systems. In [24], the measurements and system 

variables are defined that affect the system robustness in resource allocation. The values of 

task and system parameters are analyzed in [24] to provide a suitable design for resource 

allocation. In [25], the issue of assigning service tasks to the most appropriate nodes is studied. 

An optimal formulation solves the task assignment problem in [25] which is a two-phase 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2297 

approach. In [26], the advantages and drawbacks of using a simple approach which is a 

divisible load theory (DLT) and an optimal approach which is a genetic algorithm (GA) for the 

resource partitioning problem are discussed. Equal resource sharing is also considered by 

researches to efficiently distribute the loads in multiple resources. An equal sharing of loads in 

a group of object service providers offers a fast response to requests [27]. In [28], a peer 

assignment scheme is proposed to support equal sharing of loads in a P2P system which 

implements fairness in resource utilization among the participating servers. However, equal 

sharing of server loads in SaaS is hard to achieve when applications throughout the servers 

have high variation of access rate.  

Migration methods are commonly used to transfer a process on a busy server to a less loaded 

server. Most of migration algorithms aim for transparency wherein the migration process does 

not significantly affect the system activities. In [29][30], mobile agents are used in load 

balancing techniques of a distributed system. The migration method is also effective in 

video-on-demand (VOD) systems [31]. However, the overhead in performing migration is the 

main drawback of a migration technique. The overheads in migration process, which are the 

additional network latency and increase of complexity and state, are discussed in [32]. A 

dynamic deployment and relocation of virtual machines is presented in [9] for the load 

balancing scheme but the measures and parameters to select the appropriate servers to migrate 

are not discussed. In this paper, the adaptive resource management uses a service assignment 

which considers equal resource consumption in a group of servers and migration overheads 

when performing the service migration. 

3. Cloud System based on Adaptive Resource Management using a 
Dynamic Service Assignment 

The proposed cloud system supports the integration of intelligent methods in the components 

of service provisioning and resource management. Fig. 1 shows the proposed cloud 

architecture which is layered into two parts; cloud service layer and resource management 

layer. The basic components of a Cloud which are IT consumers, cloud service providers and 

resources are abstracted by the layered design. We refer a cloud service provider as the owner 

of cloud services hosted in a cloud server and a cloud service provider can have several cloud 

servers. Brokering of cloud services and virtualization of resources are supported by the 

proposed cloud system. In this paper, service provisioning is the automation of functions to 

acquire and deploy cloud application services like initializing, metering the use, finding, 

grouping, etc. These functions are mostly implemented by the components in the cloud service 

layer. The cloud service layer is composed of components that mainly implement the 

provisioning of cloud application services. A user is provided with a user agent to search for 

cloud services where the search engine is configured by users based on their preferences. A 

cloud service is defined as a service that is used by IT consumers for a certain application 

which, in our proposed cloud system, is classified as SaaS and PaaS. Also, a cloud service can 

be composed of several cloud services. Cloud service providers can have their own resources 

to host their services or rent resources. After a user agent finds the appropriate resource or 

service, the security service will process authentication before a user can access the resource 

or service. The resource management layer handles resource virtualization and dynamic 

service assignment in cloud servers. The local hardware of a cloud server is managed by a 

local resource manager (LRM). An independent resource provider has limited resources but 

this can be extended by the dynamic resource sharing of the proposed cloud system. A group 



2298         Mateo et al.: Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management 

of resource providers or data centers based on utility computing provides more storage and 

resources. The following describes the components of the proposed cloud architecture. 
 

LRM LRM LRM LRM LRM LRM LRM LRM

Resources

Resource Providers and Data Centers

Virtualization 

Manager
Replication 

Service

Load 

Balancing 

Service

Migration 

Service

Fault 

Tolerance

Load 

Predictor

Resource 

Binding

Adaptive Resource Management

Cloud 

Service 

Layer

Resource 

Management 

Layer

User 

Agents
CS Agent CS Repository

Accounting 

Manager

Grouping 

Service

Security 

Service

Service Provisioning

IT Consumers Cloud Service Providers

 
Fig. 1. The proposed cloud architecture separated into two layers. Most of the components are 

integrated with intelligent methods for service provisioning and adaptive resource management. 

 

Cloud Service Layer 

 User agent – used by a user to search for cloud services for a specified task. It 

communicates with CS agents to access and use cloud services. 

 Cloud service (CS) agent – cloud service providers use this agent to interact with users, 

other cloud service providers, accounting manager, grouping service and virtualization 

manager. 

 Cloud service (CS) repository – stores information of cloud services. Cloud services are 

registered to this repository that is accessed by a user agent to inquire for cloud services. 

 Accounting manager – handles accounting procedures in using cloud services and 

resources. This is used by CS agents to meter resources and services usage. 

 Grouping service – groups the cloud service providers according to cloud service 

properties. 

 Security service – processes authentication and authorization in accessing cloud 

services or resources. This service interacts with user agents and CS agents to perform 

security procedures.  

Resource Management Layer 

 Virtualization manager (VM) – manages interactions from cloud users, service 

providers and resources. 

 Replication service – handles replication of cloud services. VM analyzes current trends 

of cloud service access while replication service executes replication based on VM’s 

analysis.  

 Load balancing service – analyzes loads from cloud servers by gathering load 

information in every LRM. 

 Migration service – migrates cloud services based on the analysis of load balancing 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2299 

service. The VM also interacts with migration service to perform service assignment. 

 Fault tolerance service – handles faults and disconnections of the cloud system. It also 

informs VM about the faulty cloud servers to replicate or relocate cloud services to 

other cloud servers. 

 Load predictor – predicts system load trends to trigger the process of finding additional 

resources. VM interacts with load predictor to negotiate resource sharing. 

 Resource binding – provides a method of binding resources for scalable resource 

sharing. The cloud service provider interacts with resource binding after joinning a 

group of cloud service providers. 

 Local resource manager (LRM) –handles local resource management of a single cloud 

server. 

In searching cloud services, a cloud user uses its agent to interact with cloud service 

providers. It is necessary to provide the right services to clients and this is considered by 

integrating user agents with intelligent algorithms. Some research studies utilized user profiles 

to filter and select resources in the Web as in [33]. This method can support information 

awareness of users in the cloud environment to promote user-centric cloud design [34] which 

is also suitable for collaboration methods. The proposed architecture integrates an intelligent 

algorithm which utilizes user preferences in selecting best cloud service for a request. Fig. 2 

shows the interaction of user agent to find cloud services. 
 

 

 
User 

Prefrences

 

User Agent

 

Intelligent 

Algorithm

 Cloud 

Service

Cloud EnvironmentCloud user Cloud Service Provider

 

Fig. 2. The interaction of cloud user in searching appropriate cloud service using user preferences. 

 

The interaction of finding a cloud service is illustrated in Fig. 2. Cloud users perform search 

for a cloud service using CS repositories and other tools in the Cloud wherein the complex 

interactions of components to execute the search are hidden. Grouping the cloud service 

providers offers more resources and promotes effective collaboration. The scalable grouping 

of objects in our previous work in [27] groups more objects for service availability and is 

supported by a load balancing technique to forward the incoming requests. A grouping method 

is also used in the proposed cloud system for scalable resources where it groups similar or 

related cloud service providers based on their service properties. Moreover, grouping cloud 

service providers supports PaaS where solutions are extracted on different nodes of a group. A 

solution of a specific application is a stack of services which can be on different nodes. A 

cloud user does not need to know where the services are located to acquire a solution. Fig. 3 

illustrates a solution composing of different services from node A, node B and node C. The 

complex methods of resource allocation in Fig. 2 and Fig. 3 are hidden from cloud users. The 

complex interactions are implemented in the adaptive resource management of the proposed 

cloud system and the details of integrating a dynamic assignment of cloud services is tackled 

by this paper. The dynamic service assignment uses the CPU utilization and access frequency 



2300         Mateo et al.: Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management 

of a cloud service as parameters for the resources consumption rate. These are used as load 

information to assign the cloud services within the cloud servers or nodes. 
 

BA

X

C

Y

X

Y

Solution

Services

 
 

 

Cloud user

 

z

Z Stack of 

services

A group of cloud 

service providers

 

Fig.  3. Platform-as-a-Service model of the proposed cloud system where a platform or a solution is a 

stack of several services from different nodes in a group. 

 

Typically, traditional load balancing approaches use current processes or queued jobs from 

nodes as loads in deciding the task forwarding and do not consider load prediction because of 

the complexity and overheads from forwarding procedure. These concerns are handled by the 

proposed method. The procedure of dynamic service assignment is summarized: 

1. Calculate the mean resource consumption of all nodes. 

2. Collect the cloud services based on the excess cloud services load of a node which are 

candidates for deployment. 

3. Rank the cloud services and nodes based on the proportional ordering. 

4. Deploy the cloud services to nodes using the assignment function. 

5. Calculate the average difference of resource consumption rate in all nodes which will 

be compared to a threshold value of resource consumption rate variation. If the current 

resource consumption rate is higher than the threshold, then execute step 1. 

3.1 Collecting Cloud Services for Deployment 

In this paper, a cloud service provider has a single cloud server to host its cloud services. A 

singular view of accessing resources is achieved after a cloud service provider joins a group of 

cloud service providers. In the collection function, cloud services from a grouped cloud 

servers will be collected based on the excess cloud services load. The goal of the collection 

function is to select the cloud services for service assignment considering equal resource 

consumption from cloud servers. The excess cloud services load represents overload of a node 

which is the difference from current resource consumption of a cloud server and average 

resource consumption of all cloud server. v represents resource consumption of a cloud service, 

which is the processor consumption, and f represents access frequency of a cloud service. The 

value of v has a range of [0,100] from its equivalent percent value, e.g., 20 percent or 0.2 of 

CPU usage is v=20. The f is gathered based on the number of services accessed in a period of 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2301 

time represented by f = count(F, pa) where F={f1,…, fs}, fs is an access count in a specific time 

frame of F, and pa = [pai, paf], pai is initial period and paf is ending period. 

 




I

i isrc

vfs

1

 

(1) 

 

(2) 

The function count() will only include fs that is specified in pa. In Equation 1, s is resource 

consumption rate of a cloud service where resource consumption (v) is multiplied by access 

frequency (f), and Equation 2 totals the resource consumption rate of all cloud services (rc) in 

node n where I is total number of services and i is service index. In Table 1, sample values for 

each si are given. The rc in each cloud server is used to calculate the mean resource 

consumption rate in all cloud servers (µrc). 

 
Table 1. Resource consumption rate of services in each cloud server and mean resource consumption 

rate from all cloud servers. Each resource consumption rate of a service is calculated by (v*f)=s. 

CSP 1 CSP 2 CSP 3 CSP 4 Average 
S1: (40.5x1000)=40500 

S2: (20x100)=2000  

S3: (10x100)=1000  

S4: (7.5x100)=750 

S5: (7x100)=700 

S6: (59x1000)=59000  

S7: (7.55x1000)=7550  

S8: (90x100)=9000 

S9: (57x1000)=57000  

S10: (35x1000)=35000  

S11: (9x100)=900  

S12: (43x100)=4300 

S13: (30x100)=3000  

S14: (25.5x100)=2550  

S15: (15x100)=1500  

S2: (20x100)=2000  

S3: (10x100)=1000 

  

44950 75550 97200 10050 56937.5 

 

Equation 3 calculates µ rc of nodes where N is the number of cloud service providers (CSP) 

and n is index of CSP. A value of 56937.5 is determined in processing Equation 3 using data in 

Table 1. Equation 3 is used to determine the excess cloud services load (n) from a single node 

n. In Equation 4, the calculation of n is shown where µrc is subtracted to rcn. The n is used to 

collect cloud services in Equation 5 for the service assignment. 





N

n

nrc rc
N 1

1


 

 

(3) 

 rcnn rc 

 

(4) 

 


I

i iscandidateD
0

)(  
 

(5) 

In Equation 5, D collects candidate cloud services in each node. If rcn < µrc then the node is 

skipped by the collection because that node has already enough loads. Equation 5 uses the 

procedures of combination selection in Equations 6 and 7. The power set of cloud services 

S={s1, s2, …, si} of CSP n is determined by P(S)= {(s1)1,(s1,s2)2,(s1,s2,s3)3, …, Skj} to generate 

the combination sets, where Skj is a subset of P(S), k is the number of items in a set and j is 

index of each subset. The value of k-combination set is the sum of s values in Skj and this is 

denoted by Cj. The value of Cj is the total resource consumption rate of all combined cloud 

services. The complexity of this procedure is determined by adding the values from 

combination function in each element of S, {C(n, 1)+C(n, 2)+... +C(n, r)|n=I and r=k}, where 

time complexity is increased more than twice in every increment. 

njCncombinatiocurrent _   

(6) 

ncombinatiocurrentncombinatioselectedthen

ncombinatioselectedncombinatiocurrentif

__

__





 

 

(7) 



2302         Mateo et al.: Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management 

In Equation 6, the difference of Cj and  is the value of current combination that will be 

compared to a selected combination. The selected combination represented by 

selected_combination is the Skj that has the least combination value determined from previous 

selection. The current_combination represents the current Skj that is used to compare to 

selected_combination. Equation 7 is a decision of selecting current_combination to be the 

new selected_combination value. After selecting the combination set, services in Skj will be 

candidates for deployment. Fig. 4 illustrates the collection of cloud services based on n 

determined in Equation 5. At right, the lists of current rc of nodes and collected s in D are 

shown. 
 

Virtualization 

Manager

S2

S5

S3
S6

S7

S4

 

S1

S8

S9

S10

S11

S12

S13

S17

S14

S15 S16

 

 

41 2 3

 

Fig. 4. Illustration of the cloud services collection (left), and list of resource consumption rates of 

services in each nodes (right top) and list of collected services (right bottom). 

 

All nodes process the collection of cloud service in Equation 5 based on . Also, service 

replicas, e.g. S3, are gathered in the collection function and these are handled in the 

assignment function of proportional ordering. After candidate cloud services are determined, 

labeled as si, cloud servers are selected to distribute the cloud services in D using proportional 

ordering. 

3.2 Proportional Ordering and Deploying of Cloud Services to Nodes 

The proportional ordering is defined as the ordering of sets of collections, services and 

resources to proportionate the resource consumption of services to the capacity or availability 

of resources in nodes. The current resource consumption rate of a node and the resource 

consumption rate of a service are the parameters used for proportional ordering. The approach 

of service assignment is different from [26] where the proposed method is executed before the 

cloud services are actually accessed by cloud consumers. The selection of cloud servers for the 

assignment function uses the current resource consumption rate for ranking. 

)},...,,({ 21 nrcrcrcrankLHR   
(8) 

)},...,,({ 21 isssrankHLS 
 

(9) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2303 

In the first run, all cloud servers are ranked from lowest to highest based on rcn values 

shown in Equation 8. rcn is the current resource consumption rate of a cloud server after 

processing the cloud service collection. On the other hand, the services are ranked from 

highest to lowest resource consumption rate in Equation 9. si is the resource consumption rate 

of a cloud service from D. After ranking, the efficient assignment of cloud services is 

necessary. All cloud servers should have approximately equal values of resource consumption 

rate after deploying cloud services and this is considered by procedures in Equations 10 to 11. 

nrcn rc 
 

(10) 

The current resource consumption rate of a cloud server n is subtracted from the mean 

resource consumption rate to get the value of n in Equation 10. n is used to select the 

collected cloud services in Equation 11 for deployment. If rcn > rc then the cloud server is 

skipped by the procedure because rcn is already high.  

)}(),...,(),({),(
21   srcsrcsrcRStPAssignmen

n  
(11) 

PAssignment in Equation 11 is the assignment function which assigns S to R based on n. In 

the assignment function, s = {s1, s2, …, sn} is a collection of si, which will be deployed to 

cloud server n. Cloud services in S are assigned to a cloud server in chronological order until 

the total value in s is approximately equal to n. The si will be skipped if the total resource 

consumption of the assigned cloud services is greater than n, {do s= s1+s2+…+si | skip si 

if s>n }. After the procedure reached the last index of S, the assignment function is 

processed to the next cloud server. If the procedure reached the last index of R and there are 

still si needed to be assigned then the procedure recalculates the ranks of nodes and service 

assignment will start at the first index of new R. A tolerance value is added in n which is the 

average resource consumption of the remaining cloud services (μs) in S (n=n+ μs) to have 

a high probability that all si will be assigned on the next procedure. Same procedures are 

repeated until S is empty. An assignment of cloud service is skipped if the cloud server already 

has a same or replicated cloud service, and thus, will be assigned to the next node. After the 

assignment, the system performs the actual deployment. Fig. 5 illustrates the service 

assignment based on proportional ordering and the list inside of Fig. 5 shows the final values 

of service assignment. The figure shows that S10, S8 and S11 are assigned to CSP 4 while S7 

and S12 are assigned to CSP 1. CSP 2 and 3 have only one cloud service, however, these 

services are frequently accessed by cloud consumers. 

The algorithm tries to equally distribute cloud services to minimize the difference value of 

resource consumption rate in each cloud server since S6 and S7 cannot be reassigned. The 

cloud servers or cloud service providers are ordered from lowest to highest and the cloud 

services are ordered from highest to lowest before performing the proposed service 

assignment where cloud services are distributed efficiently to have equal resource 

consumption in all cloud servers. A round robin technique is used to distribute client requests 

in replicas and similar services. Also, whenever a service is reassigned to another node, the 

pending requests of that service will be transferred. The active process of a request in a node 

will continue until it is completed. The address of service will change so that incoming 

requests will be redirected to the new address of service. 
 



2304         Mateo et al.: Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management 

1 3 24

S4

S9

S3

S1

S10

S14

S8

S6S13

S7 S12

S15
S5

S2

S2
S3

35000
9009000 7550

10050 44950 57000 59000

    
S11

 

4300

Virtualization Manager

),( RStPAssignmen 

 

Fig. 5. The service assignment of cloud services based on the proportional ordering. 

3.3 Dynamic Execution of Service Assignment 

It is ideal to perform migration frequently to minimize load variations, however, this also 

produces migration overheads. In a state where nodes have very low load variation, there is no 

need to perform migration because of migration overheads. Also, the decision of choosing a 

right state of load variation to perform the service assignment should be considered. The 

dynamic execution of service assignment is decided based on the average difference of 

resource consumption rates in all nodes which is compared to a threshold value. The same 

parameters from Section 3.1 are used in analyzing the resource consumption rate variation in 

the group of cloud servers. The difference of rcn and rc is calculated where si of rcn is 

collected from a specified time period (p), p = [pi, pf], pi is the initial period and pf is the ending 

period, p < pa. The average difference of resource consumption rates is represented by σ in 

Equation 12 where n is index of a node and N is the total number of nodes. 





N

n

rcnrc
N 1

1
  

 

(12) 

The proposed algorithm tolerates σ to have a high value as much as rc. We assume that the 

value of σ should not be greater than rc. If σ > rc then some nodes will have an additional 

resource consumption of more than rc which will affect the service processes on those nodes 

to have longer processing time, and thus, migration is necessary. But also, migration overhead 

should be considered by the calculation. The threshold value represented by  in Equation 13 

is calculated by rc over λ in Equation 14. 



rc
L 

 

 

(13) 

M
L

pt



























max
 

 

(14) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2305 

Equation 14 determines the value of λ which is the product of mean processing time of 

cloud services (μpt) over the migration overhead (L), load variation ratio (σ/maxσ), and number 

of services to be migrated (M). Migration overhead is the network latency of performing 

migration (L). L is determined by the mean size of cloud services over the speed of network 

(L=service mean size/network speed). If μpt is greater than L then migration can be performed 

which also means that migration is faster than processing time of a service. If L is greater than 

μpt then migration is not necessary. In the load variation ratio, maxσ is the value of maximum 

load variation that is calculated by overloading a single node with all rc while other nodes have 

no loads. M is determined in Equation 15 by adding the difference value of rc and  in each 

node and divided by μs which will estimate the number of services to be migrated. Equation 16 

is the function of skipping the value of node with rc < rc by assigning it with 0 because there 

is no  in the node. The load variation ratio and M are important factors in service migration 

where a very small σ will not consider migration. 

 


N

n rcn

s

rcfM
1

),(
1




 

 

(15) 










rcnrcn

rcn

rcn
rcifrc

rcif
rcf






,

,0
),(  

 

(16) 

The value of L is adjusted based on the final value of λ. A value of lower than 1 from λ 

means that there is no need to perform migration while the opposite can trigger migration. The 

resource consumption analysis is performed by the load balancing service. The current σ in 

nodes is compared to L, and if σ > L then the virtualization manager executes service 

assignment. Also, because of f value in rc, the new assignments of services are efficient on 

serving the next requests if there is a similar trend of service access from previous service 

access trend of nodes, and if not the case then it is possible that the service assignments will be 

adjusted again. If σ < L then it means that there is no need to re-assign the services.  

4. Simulation and Evaluation 

The intelligent methods were developed using Java 2 SDK and these were integrated in the 

Globus toolkit [35] to implement the adaptive resource management. The cloud service 

providers performed grouping using the grouping service. In finding cloud service, a user 

agent was utilized as an interface for search. The complex interactions of finding appropriate 

cloud service and virtualization of resources were transparent to users. In managing resources, 

the load balancing service analyzed load variation in cloud servers and implemented a load 

balancing technique to forward requests to replicated services which were identified in a group 

of cloud service providers. The virtualization manager implemented the proposed dynamic 

service assignment (DSA) to support load distribution. Based on the analysis of resource 

consumption rate variation in all nodes, the dynamic execution of service assignment was 

operational. Fig. 6 illustrates the interaction of the proposed dynamic service assignment 

where cloud services are collected from cloud service providers after the mean resource 

consumption rate and excess cloud services load are determined. After collecting cloud 

services, virtualization manager ranks the collected cloud services and nodes based on the 

proportional ordering, and then it deploys the cloud services. 
 



2306         Mateo et al.: Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management 

 
Fig. 6. Service assignment processed by the virtualization manager. 

 

A simulation environment was configured to determine the network latency and throughput 

performance of the system using the proposed dynamic service assignment. Total message 

latencies and total turn-around time of requests were observed to determine the amount of 

network latency from exchanging messages and to determine the responsiveness of the system, 

respectively. These two performance measures impose a tradeoff in using conventional 

algorithms. An example of the tradeoff is in the case of using round robin and least load 

selection for load distribution. When there are fewer requests arriving in a period of time, the 

round robin has better performance in throughput and message overhead. However, if a large 

volume of requests arrived in a short period of time, then the least load selection procedure is 

more effective in providing responsive services compared to round robin. To set the 

configuration in measuring network latency and throughput performance, simVO [36] was 

used. The simVO implements message handlers for the communications of agents and 

scheduler to schedule events of message passing, task processing and migration of services 

which was used by DSA. Other simulators like in [37][38] have no support in handling 

message passing. 

4.1 Simulation Environment 

The simulation environment was consisted of 100 nodes, 20 services and 20 virtual groups. 

Virtual grouping of nodes was necessary to simulate the dynamic environment of a cloud 

system. The nodes were divided equally into 10 domains and identified by {A, B,…, J}. A ring 

topology was used to connect each domain where a domain has direct connection to two 

domains represented by {A↔B↔C↔D↔E↔F↔G↔H↔I↔J↔A} and each link has a 

latency of 10 milliseconds (ms). All nodes in a domain were connected to a router and their 

connections have a mean latency of 5 ms. Separated by domains, a node can connect with 

another node in a different domain by a virtual group. Services were replicated throughout the 

nodes where each node was deployed with different 5 services. The mean processing time of 

services was set to 550 ms. Each service has a size of 1 MB in migrating while the network 

speed is 100 Mbps. The resource consumption and processing time of each service in node 1 is 

shown in Table 2. Each f value from service was set to 1 and incremented by 1 after a service 

was invoked by a request. 

The initial deployment of services and assignment of nodes in a group were random. Every 

virtual group was set with initial time and termination time where each has a 10000 ms period 

to execute and a time interval of 500 ms to start the next virtual group. The time period for 

analyzing the resource consumption rate variation as basis to execute the service assignment 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2307 

was set to 1000 ms. Client requests were generated to perform the simulation. 
 

Table 2. Service resource consumption and processing time. 

Service Index CPU Consumption Processing Time 

1 45% 750 ms 

2 33% 550 ms 

3 30% 500 ms 

4 28.5% 475 ms 

5 27% 450 ms 

 

A request contained tags of service, node identification of requester and arrival time of 

request. The services were application cloud services with properties of processing time and 

labeled by service tags. Each node was configured with only one processor that has a speed of 

1 GHz. Loads were determined by total time of all waiting jobs in the queue of a node. The 

load distribution scheme and service assignment were implemented within the group. Also, 

the virtual groups were configured that the processing of tasks will continue even after a group 

is terminated.  

4.2 Performance Evaluation 

4.2.1 Threshold analysis for executing DSA 

The threshold value in Equation 14 for the dynamic execution method was verified. Two 

measures were used which are the total turn-around time of requests and overhead from the 

number of migrated services. Different thresholds were compared to Equation 14 and these 

were; t1 = 0.0 which always executes migration process, t2 = rc/2 which is a value between t1 

and t3, t3 = rc which executes migration process when σ greater than rc and t4= rc/λ which 

is used for the dynamic execution method. We generated 1000 requests to perform the 

verification and distributed the requests to nodes based on a specified state of σ. 

Fig. 7 shows the result of total turn-around time of requests and migration overhead using 

different load variation values represented in x axis of the graph. The load variation ratio (x) is 

calculated by σ/maxσ. The x values were set from 0.1 to 0.9. Each case of x was repeated 10 

times and calculated the average of results which was used as final value. In a high load 

variation, the waiting time of each request in a node is longer because of the high volume of 

pending requests to be processed. Fig. 7-(a) shows the total turn-around time of requests from 

each threshold in minutes and, noticeably, t3 took a longer time to finish each request from 0.2 

to 0.5 values of x which is not efficient. t1 always executed migration but migration overhead 

was also high shown in Fig. 7-(b). The turn-around time and migration overhead of t4 has 

similar trend as t1. The average results from Fig. 7-(a) (t1=480.95, t2=500.88, t3=734.43, 

t4=478.11) and from Fig. 7-(b) (t1=465.89, t2=433.11, t3=304.33, t4=467.44) shows that t4 

has the shortest turn-around time compared to all algorithms and t4 is better in handling 

migration overheads than t1, respectively. 

Moreover, the performance of each threshold in very low load variations was compared. x 

was set from 0.01 to 0.1 and generated 100 to 1000 requests, and then totaled the result of each 

case. In Fig. 8, the average of total results is shown where t1 has the longest total turn-around 

time because of migration overhead. t2 and t3 did not execute migration while t4 executed 

migration in x=0.1 and did not execute in  x<0.1. The result from Figure 8 shows that 

migration is not necessary in a very low x. 



2308         Mateo et al.: Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management 

   
(a)                                                                             (b) 

Fig. 7. Total turn-around time (a) and migration overhead (b) using different load variation ratio. 

 

 
Fig. 8. Total turn-around time using load variation ratio ranging from 0.01 to 0.1. 

 

   
(a)                                                                             (b) 

Fig. 9. Total turn-around time (a) and migration overhead (b) in increasing the number of nodes. 

 

In Fig. 9, the number of nodes in x axis represents the resource size in a group (N). The 

values used in Fig. 9 is the average result from 0.1 to 0.9 of x. Fig. 9-(a) shows that increasing 

N resulted to a shorter turn-around time of requests. This is because most of the loads were 

distributed throughout the nodes, and thus, the waiting time of a service was shortened. In Fig. 

9-(b), the average of migration overhead is shown. Similar to Fig. 7-(b), t3 has the longest 

turn-around time but lowest in migration overhead. Fig. 9 shows that t4 is almost similar to t1 

but is better in handling migration overhead when the nodes are increased. The average results 

from Fig. 9-(a) (t1=165.15, t2=176.11, t3=346.75, t4=163.46) and from Fig. 9-(b) (t1=522.38, 

t2=480.84, t3=335.62, t4=511.8556) shows that t4 has the shortest turn-around time and better 

in handling migration overhead, repectively. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2309 

4.2.2 Normal distribution result 

There were two cases used in generating requests for the performance evaluation which are 

the normal distribution and exponential distribution. In the first case of simulation, requests 

were generated using a normal distribution. This determines the performance of an algorithm 

in handling the request arrivals in an exponential increasing and decreasing manner. The 

largest number of requests is observed in the middle of simulation period in this case. We used 

common load balancing techniques for the performance comparison. The round robin (RR), 

least load selection (LL), adaptive load distribution and migration scheme were used to 

compare the proposed dynamic service assignment (DSA) for message latencies and 

turn-around time performances. The LL, RR and adaptive distribution are not the same 

approach as the service assignment and migration scheme but these are used for efficient 

resource allocation and load balancing of distributed nodes [25][26][36]. RR forwarded the 

requests in an alternating manner while LL forwarded the requests to the least loaded node 

with the same service. The adaptive load distribution used both RR and LL alternately based 

on a load variation analysis which was already supported in simVO [36]. In the migration 

scheme, we used the method in [39]. Both DSA and migration scheme used RR technique to 

perform service migration, however, DSA analyzed the resource consumption rate variation 

while migration scheme analyzed the current difference on server loads, where the execution 

of DSA was not as frequent as in migration scheme. The total network latencies of messages 

and total turn-around time of requests used a volume of 1000 to 10000 requests for evaluation 

and the results are shown in Fig. 10. 
 

    
(a)                                                                             (b) 

Fig. 10. Message latencies (a) and total turn-around time (b) using arrival time in normal distribution 

 

The latencies of deciding for the least loaded node and migration processes were included in 

the message latencies. In Fig. 10-(a), the message latencies of all algorithms are shown. It was 

observed that the RR produced the lowest message latencies and DSA was second to RR. The 

reason RR had the lowest result is because it did not produced latency of deciding in which 

node it will forward the request, which was the case in LL; nor did it produced latency in 

migrating cloud services, which was the case in migration scheme. It was also observed from 

the adaptive load distribution, that the migration scheme and DSA produced a significant 

increase in latencies starting from 6000 requests. In the adaptive load distribution, a frequent 

use of least load selection was occurring because of the high load variation. Similarly, 

migration scheme frequently executed migration of services because of the high load variation. 

Different from the two mentioned schemes, DSA was analyzing the resource consumption rate 

variance of nodes periodically to decide the execution of service assignment. In Fig. 10-(b), 

the total turn-around time performance shows that DSA is the fastest to respond to requests. 



2310         Mateo et al.: Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management 

The results from LL in Fig. 10-(b) are opposite on those from Fig. 10-(a). We observed that 

LL demonstrated better load distribution in Fig. 10-(b), but has the highest message latencies 

compared to all algorithms. Moreover, LL was still outperformed by DSA in handling load 

distribution. RR was inefficient in handling the response time of requests because it cannot 

handle high load variation throughout the nodes which caused delays in processing the 

requests. 

4.2.3 Exponential distribution result 

The second case generated the requests using an exponential distribution. In this case, the 

performance of each algorithm in handling the request arrivals in an exponential increasing 

manner was determined. The largest number of requests is observed in the final period of 

simulation. At the start of simulation, few requests are arriving and then the number of 

requests is increased exponentially until the end of simulation. The same algorithms in Section 

4.2.2 were used to compare the performance of the proposed algorithm in message latencies 

and total turn-around time of requests. 

 

      
(a)                                                                             (b) 

Fig. 11. Message latencies (a) and total turn-around time (b) using arrival time in exponential 

distribution. 

 

In Fig. 11-(a), it shows that the RR produces the lowest message latencies and the DSA is 

second to RR which has the same trend in a normal distribution in Fig. 11-(a). The significant 

increase in latency from the adaptive load distribution, migration scheme and DSA was 

observed starting from 8000 requests. Also, it was observed that the message latencies from 

DSA, adaptive load distribution and migration scheme were lowered compared to Fig. 10-(a). 

DSA is the fastest to respond to requests in both cases shown in Fig. 10-(b) and Fig. 11-(b). 

4.2.4 Average of normal and exponential distribution 

The number of migrated services from migration technique and DSA in Sections 4.2.2 and 

4.2.3 is summarized in Fig. 12. Also, the results from two cases were averaged and these are 

shown in Fig. 13 which is a summary of performances of algorithms in message latencies and 

turn-around time of requests. 

Fig. 12 shows that DSA is more efficient because of lower migration overhead compared to 

migration technique. Performing service migration produces network latencies and also 

affects the turn-around time of requests when these requests are waiting to be processed by a 

migrating service. However, in DSA, the services were assigned to nodes according to its 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2311 

proportioned resource consumption. The proposed method tried to provide equal resource 

consumption in all nodes so that a node can be responsive on the next requests. Fig. 13 shows 

the over-all performance from simulations. In Fig. 13-(a), RR is the lowest in producing 

message latencies while DSA is second to RR. LL has the highest message latencies because 

of high volume of message exchanges in the group of nodes. In Fig. 13-(b), DSA is the fastest 

in completing service requests while RR is the slowest. It is also shown that the adaptive load 

distribution and migration almost have same result. 

 

   

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Requests

N
u
m

b
e
r 
o
f 
m

ig
ra

te
d
 s

e
rv

ic
e
s

M igration

DSA

 
Fig. 12. Average number of migrated service of Migration and DSA. 

 

   
(a)                                                                 (b) 

Fig. 13. Average message latency (a) and total turn-around time (b) from all cases. 

 

We also calculated the ratio from the results of DSA to other algorithms to compare the 

efficiency in each algorithm, e.g., if the ratio of RR and DSA is 2:1 then DSA was twice 

efficient compared to RR. DSA was 1.4, 4.4 and 1.8 times better than adaptive scheme, LL and 

migration scheme, respectively, in message latencies. RR (0.7) had the lowest message 

latencies, however, it was the slowest in total turn-around time performance. DSA was 2.1, 1.4, 

2.7 and 1.8 times better than adaptive load distribution, LL, RR and migration scheme, 

respectively, in total turn-around time performance. 

5. Conclusion 

Cloud computing is an emerging computing paradigm and, apparently, there will be a need for 

new technologies and innovations to exploit this new paradigm. The QoS in provisioning of 

application services to cloud users is very important and this is supported by proper 



2312         Mateo et al.: Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management 

interactions from components of resource management. A cloud system integrated with 

intelligent algorithms for adaptive methods in providing services and managing resources was 

presented in this paper. The adaptive resource management supported the service provisioning 

of the proposed cloud system. This paper mainly focused on the details of the proposed 

dynamic service assignment that supported the load distribution within cloud servers. The 

proposed technique identified excess cloud services based on the mean resource consumption, 

and then, assigned these to nodes considering equal resource consumption by the proportional 

ordering of services and nodes, finally, deployed the services to its assigned nodes. The 

variation of resource consumption rate was analyzed periodically to decide the service 

assignment execution. 

A network topology for simulation was configured and the performance of DSA was 

evaluated in terms of message latencies and turn-around time. The result showed that DSA 

performed better in message latencies than adaptive scheme and LL because it did not produce 

the latency of service forwarding, and migration of services was not frequently executed 

compared to migration scheme. RR had the lowest message latencies but also had longer 

response time for service requests. DSA performed best in throughput performance because it 

provided the efficient assignment of services to nodes for the next requests and this resulted to 

the responsiveness of cloud services. 

References 

[1] Sales Force, “Service cloud and chatter,” http://www.salesforce.com. 

[2] Amazon Web Services, “Amazon EC2,” http://aws.amazon.com/ec2. 

[3] S. Zhang, S. Zhang, X. Chen and X. Hou, “Cloud Computing Research and Development Trend,” in Proc. of 

International Conference on Future Networks, pp. 93-97, Jan. 2010. Article (CrossRef Link) 

[4] S.S. Yadav and Z.W. Hua, “Cloud: A Computing Infrastructure on Demand,” in Proc. of Computer 

Engineering and Technology, pp. 423-426, Apr. 2010. Article (CrossRef Link) 

[5] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg and I. Brandic, “Cloud Computing and Emerging IT Platforms: 

Vision, Hype, and Reality for Delivering Computing as the 5th Utility,” Future Generation Computer Systems, 

vol. 25, no. 6, pp. 599-616, Dec. 2009. Article (CrossRef Link) 

[6] Google, “Google app eng,” http://code.google.com/appengine. 

[7] Microsoft Corporation, “Azure services platform,” http://www.microsoft.com/windowsazure. 

[8] NASA, “Nebula cloud computing platform,” http://nebula.nasa.gov. 

[9] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I.M. Llorente, R. Montero, Y. Wolfsthal, E. 

Elmroth, J. Cáceres, M. Ben-Yehuda, W. Emmerich and F. Galán, “The RESERVOIR Model and 

Architecture for Open Federated Cloud Computing,” IBM Journal of Research and Development, vol. 53, no. 

4, July 2009. Article (CrossRef Link) 

[10] J.P. Casazza, M. Greenfield and K. Shi, “Redefining Server Performance Characterization for Virtualization 

Benchmarking,” Intel Technology, vol. 10, no. 3, Aug. 2006. Article (CrossRef Link) 

[11] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao and D. Newell, “VM3: Measuring, Modeling and 

Managing VM Shared Resources,” Computer Networks, vol. 53, no. 17, pp. 2873-2887, Apr. 2009. Article 

(CrossRef Link) 

[12] Q. Li, Q. Hao, L. Xiao and Z. Li, “Adaptive Management of Virtualized Resources in Cloud Computing using 

Feedback Control,” in Proc. of IEEE International Conference on Information Science and Engineering, pp. 

99-102, Dec. 2009. Article (CrossRef Link) 

[13] J. Li, M. Qiu, J.W. Niu, Y. Chen and Z. Ming, “Adaptive Resource Allocation for Preemptable Jobs in Cloud 

Systems,” in Proc. of 10th International Conference on Intelligent Systems Design and Applications, pp. 

31-36, Nov. 2010. Article (CrossRef Link) 

[14] G. Ribeiro-Justo, A. Salehb and T. Karranb, “Intelligent Reconfiguration of Dynamic Distributed 

Components,” Electronic Notes in Theoretical Computer Science, vol. 180, no. 2, pp. 91-106, Aug. 2007. 

Article (CrossRef Link) 

[15] R.M.A. Mateo and J. Lee, “Data Mining Model based on Multi-agent for the Intelligent Distributed 

Framework,” International Journal of Intelligent Information and Database Systems, vol. 4, no. 4, pp. 

322-336, 2010. Article (CrossRef Link) 

http://dx.doi.org/doi:10.1109/ICFN.2010.58
http://dx.doi.org/doi:10.1109/ICCET.2010.5486068
http://dx.doi.org/doi:10.1016/j.future.2008.12.001
http://dx.doi.org/doi:10.1147/JRD.2009.5429058
http://dx.doi.org/doi:10.1535/itj.1003.07
http://dx.doi.org/doi:10.1016/j.comnet.2009.04.015
http://dx.doi.org/doi:10.1016/j.comnet.2009.04.015
http://dx.doi.org/doi:10.1109/ICISE.2009.211
http://dx.doi.org/doi:10.1109/ISDA.2010.5687294
http://dx.doi.org/doi:10.1016/j.entcs.2006.08.039
http://dx.doi.org/doi:10.1504/IJIIDS.2010.035579


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 12, December 2011                               2313 

[16] M.A. Cusumano, “The Changing Software Business: Moving from Products to Services,” Computer, vol. 41, 

no. 1, pp. 20-27, Jan. 2008. Article (CrossRef Link) 

[17] D. Thomas, “Enabling Application Agility – Software as a Service, Cloud Computing and Dynamic 

Languages,” Journal of Object Technology, vol. 7, no. 4, pp. 29-32, May-June 2008. Article (CrossRef Link) 

[18] H. Liao, “SaaS Business Model for Software Enterprise,” in Proc. of International Conference on Information 

Management and Engineering, pp. 604-607, 2009. Article (CrossRef Link) 

[19] J.C. Chen, N.E. Gold, N. Mehandjiev and P.J. Layzell, “Managing Supply Chains of Software as a Service 

through Agent Negotiations,” in Proc. of IEEE 7th International Conference on E-Commerce Technology, pp. 

378-381, 2005. Article (CrossRef Link) 

[20] A. Elfatatry and P. Layzell, “Software as a Service: A Negotiation Perspective,” in Proc. of Computer 

Software and Applications Conference, pp. 501-506, Dec. 2002. Article (CrossRef Link)   

[21] M. Godse and S. Mulik, “An Approach for Selecting Software-as-a-Service (SaaS) Product,” in Proc. of IEEE 

International Conference on Cloud Computing, pp. 155-158, Sep. 2009. Article (CrossRef Link) 

[22] W.T. Tsai, X. Sun, Q. Shao and G. Qi, “Two-tier Multi-tenancy Scaling and Load Balancing,” in Proc. of 

IEEE 7th International Conference on Business Engineering, pp. 484-489, Nov. 2010. Article (CrossRef Link) 

[23] L. Zhang, Y. Wen and Y. Han, “A Proactive Approach to Load Balancing of Workflow Execution in a SaaS 

Environment,” in Proc. of IEEE 5th International Symposium on Service Oriented System Engineering, pp. 

39-46, June 2010. Article (CrossRef Link) 

[24] S. Ali, H.J. Siegel and A.A. Maciejewski, “The Robustness of Resource Allocation in Parallel and Distributed 

Computing Systems,” in Proc. of ISPDC/HeteroPar, pp. 2-10, July 2004. Article (CrossRef Link) 

[25] M. Louta and A. Michalas, “Efficient Service Provisioning through Dynamic Service Task Assignment in a 

Multi-domain Distributed Computing Environment,” International Journal of Internet Protocol Technology, 

vol. 3, no.3, 2008. Article (CrossRef Link) 

[26] B.Volckaert, P. Thysebaert, M. D. Leenheer, F. D. Turck, B. Dhoedt and P. Demeester, “Flexible Grid Service 

Management through Resource Partitioning,” Journal of Supercomputing, vol. 38, 2006, pp. 275-305. Article 

(CrossRef Link) 

[27] R.M.A. Mateo and J. Lee, “Proportional Load Balancing using Scalable Object Grouping based on Fuzzy 

Clustering,” Applications in Soft Computing, Advances in Intelligent and Soft Computing, vol. 58, pp. 41-50, 

2009. Article (CrossRef Link) 

[28] C.L. Hu, D.Y. Chen, Y.H. Chang and Y.W. Chen, “Fair peer Assignment Scheme for Peer-to-Peer File 

Sharing,” KSII TIIS Journal, vol. 4, no. 5, pp. 709-735, Oct. 2010. Article (CrossRef Link) 

[29] H.A. Thant, K.M. San, K.M.L. Tun, T.T. Naing, N. Thein, “Mobile Agents based Load Balancing Method for 

Parallel Applications,” in Proc. of APSITT, pp. 77–82, Feb. 2005. Article (CrossRef Link)   

[30] Y. Yang, Y. Chen, X. Cao1 and J. Ju1, “Load Balancing using Mobile Agent and a Novel Algorithm for 

Updating Load Information Partially,” in Proc. of ICCNMC, LNCS, vol. 3619, pp. 1243-1252, 2005. Article 

(CrossRef Link) 

[31] Y.F. Huang and C.C. Fang, “Load Balancing for Clusters of VOD Servers”, Information Sciences, vol. 164, no. 

1-4, pp. 113-138, Aug. 2004. Article (CrossRef Link) 

[32] L. Hughes, “Process Migration and its Influence on Interprocess Communication”, Computer 

Communications, vol. 21, no. 9, pp. 781-792, July 1998. Article (CrossRef Link) 

[33] J. Xu, Z. Zhu, X. Ren, Y. Tian and Y. Luo, “Personalized Web Search using User Profile,” in Proc. of 

International Conference on Computational Intelligence and Security, pp. 222-227, Dec. 2007. Article 

(CrossRef Link) 

[34] L. Ardissono, A. Goy, G. Petrone and M. Segnam, “From Service Clouds to User-Centric Personal Clouds,” in 

Proc. of IEEE International Conference on Cloud Computing, Cloud, pp 1-8, Sep. 2009. Article (CrossRef 

Link) 

[35] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,” International Journal of 

Supercomputer Applications, vol. 11, no. 2, pp. 115–128, 1997. Article (CrossRef Link) 

[36] R.M.A. Mateo, H.H. Yang and J. Lee, “Managing Virtual Organizational Tasks using Simvo in Grid 

Environment,” in Proc. of ICONI & APIC-IST, Dec. 2010, pp. 669-673. 

[37] A. Sulistio, U. Cibej, S. Venugopal, B. Robic and R. Buyya, “A Toolkit for Modeling and Simulating Data 

Grids: an Extension to GridSim,” Concurrency and Computation: Practice and Experience, vol. 20, no. 13, pp. 

1591-1609, 2008. Article (CrossRef Link) 

[38] F. Howell and R. McNab, “Simjava: a Discrete Event Simulation Package for Java with Applications in 

Computer Systems Modeling”, in Proc. of International Conference on Web-based Modelling and Simulation, 

1998. Article (CrossRef Link) 

[39] R.M.A. Mateo and J. Lee, “Load Balancing based on Migration in Cloud Environment,” in Proc. of ICONI & 

APIC-IST, December 2010, pp. 675-679. 

 

http://dx.doi.org/doi:10.1109/MC.2008.29
http://dx.doi.org/doi:10.5381/jot.2008.7.4.c3
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05477915
http://dx.doi.org/doi:10.1109/ICECT.2005.58
.%20http:/dx.doi.org/doi:10.1109/CMPSAC.2002.1045054
http://dx.doi.org/doi:10.1109/CLOUD.2009.74
http://dx.doi.org/doi:10.1109/ICEBE.2010.103
http://dx.doi.org/doi:10.1109/SOSE.2010.3
http://dx.doi.org/doi:10.1109/ISPDC.2004.51
http://dx.doi.org/doi:10.1504/IJIPT.2008.020950
http://dx.doi.org/doi:10.1007/s11227-006-8752-9
http://dx.doi.org/doi:10.1007/s11227-006-8752-9
http://dx.doi.org/doi:10.1007/978-3-540-89619-7_5
http://dx.doi.org/doi:10.3837/tiis.2010.10.002
http://dx.doi.org/doi:10.1109/APSITT.2005.203634
http://dx.doi.org/doi:10.1007/11534310_130
http://dx.doi.org/doi:10.1007/11534310_130
http://dx.doi.org/doi:10.1016/j.ins.2003.10.005
http://dx.doi.org/doi:10.1016/S0140-3664(98)00156-X
http://doi.ieeecomputersociety.org/10.1109/CIS.2007.167
http://doi.ieeecomputersociety.org/10.1109/CIS.2007.167
http://dx.doi.org/doi:10.1109/CLOUD.2009.61
http://dx.doi.org/doi:10.1109/CLOUD.2009.61
http://dx.doi.org/doi:10.1177/109434209701100205
http://dx.doi.org/doi:10.1002/cpe.1307
http://www.icsa.inf.ed.ac.uk/research/groups/hase/papers/simjava/


2314         Mateo et al.: Dynamic Service Assignment based on Proportional Ordering for the Adaptive Resource Management 

 
 

 

Romeo Mark A. Mateo received his B.S. degree in Information Technology from 

West Visayas State University, Philippines in 2004 and M. Eng. degree in Information 

and Telecommunications Engineering from Kunsan National University, South Korea 

in 2007. Currently, he is a Doctor of Engineering candidate in Information and 

Telecommunications and working as a research assistant at the Distributed Systems 

Laboratory (DSL). His research interests include distributed systems, mobile 

computing, wireless sensors, artificial intelligence and data mining. 

 

Jaewan Lee received his B.S., M.S., and Ph.D. degrees in Computer Engineering 

from Chung-Ang University in 1984, 1987, and 1992, respectively. Currently, he is a 

professor at the School of Electronic and Information Engineering in Kunsan National 

University, Kunsan City, South Korea. His research interests include distributed 

systems, database systems, data mining and computer networks. 

 


