• Title/Summary/Keyword: Adaptive Process Control

Search Result 457, Processing Time 0.028 seconds

The Design of Adaptive Fuzzy Polynomial Neural Networks Architectures Based on Fuzzy Neural Networks and Self-Organizing Networks (퍼지뉴럴 네트워크와 자기구성 네트워크에 기초한 적응 퍼지 다항식 뉴럴네트워크 구조의 설계)

  • Park, Byeong-Jun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.126-135
    • /
    • 2002
  • The study is concerned with an approach to the design of new architectures of fuzzy neural networks and the discussion of comprehensive design methodology supporting their development. We propose an Adaptive Fuzzy Polynomial Neural Networks(APFNN) based on Fuzzy Neural Networks(FNN) and Self-organizing Networks(SON) for model identification of complex and nonlinear systems. The proposed AFPNN is generated from the mutually combined structure of both FNN and SON. The one and the other are considered as the premise and the consequence part of AFPNN, respectively. As the premise structure of AFPNN, FNN uses both the simplified fuzzy inference and error back-propagation teaming rule. The parameters of FNN are refined(optimized) using genetic algorithms(GAs). As the consequence structure of AFPNN, SON is realized by a polynomial type of mapping(linear, quadratic and modified quadratic) between input and output variables. In this study, we introduce two kinds of AFPNN architectures, namely the basic and the modified one. The basic and the modified architectures depend on the number of input variables and the order of polynomial in each layer of consequence structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the AFPNN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed AFPNN can produce the model with higher accuracy and predictive ability than any other method presented previously.

A Selectively Cumulative Sum (S-CUSUM) Control Chart with Variable Sampling Intervals (VSI) (가변 샘플링 간격(VSI)을 갖는 선택적 누적합 (S-CUSUM) 관리도)

  • Im, Tae-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.560-570
    • /
    • 2006
  • This paper proposes a selectively cumulative sum (S-CUSUM) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI S-CUSUM chart is to adjust sampling intervals and to accumulate previous samples selectively in order to increase the sensitivity. The VSI S-CUSUM chart employs a threshold limit to determine whether to increase sampling rate as well as to accumulate previous samples or not. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain model is employed to describe the VSI S-CUSUM sampling process. Some useful formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI S-CUSUM chart is proposed. Comparative studies show that the proposed VSI S-CUSUM chart is uniformly superior to the VSI CUSUM chart or to the Exponentially Weighted Moving Average (EWMA) chart with respect to the ATS performance.

  • PDF

An Adaptive Multi-Echelon Inventory Control Model for Nonstationary Demand Process

  • Na, Sung-Soo;Jun, Jin;Kim, Chang-Ouk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.441-445
    • /
    • 2004
  • In this paper, we deal with an inventory model of a multi-stage, serial supply chain system where a single product type and nonstationary customer demand pattern are considered. The retailer and suppliers place their orders according to an echelon-stock based replenishment control policy. We assume that the suppliers can access online information on the demand history and use this information when making their replenishment decisions. Using a reinforcement learning technique, the inventory control parameters are designed to adaptively change as the customer demand pattern is altered, in order to maintain a given target service level. Through a simulation based experiment, we verified that our approach is good for maintaining the target service level.

  • PDF

Smart Control System Using Fuzzy and Neural Network Prediction System

  • Kim, Tae Yeun;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.105-115
    • /
    • 2019
  • In this paper, a prediction system is proposed to control the brightness of smart street lamps by predicting the moving path through the reduction of consumption power and information of pedestrian's past moving direction while meeting the function of existing smart street lamps. The brightness of smart street lamps is adjusted by utilizing the walk tracking vector and soft hand-off characteristics obtained through the motion sensing sensor of smart street lamps. In addition, the motion vector is used to analyze and predict the pedestrian path, and the GPU is used for high-speed computation. Pedestrians were detected using adaptive Gaussian mixing, weighted difference imaging, and motion vectors, and motions of pedestrians were analyzed using the extracted motion vectors. The preprocessing process using linear interpolation is performed to improve the performance of the proposed prediction system. Fuzzy prediction system and neural network prediction system are designed in parallel to improve efficiency and rough set is used for error correction.

Smooth Formation Navigation of Multiple Mobile Robots for Avoiding Moving Obstacles

  • Chen Xin;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.466-479
    • /
    • 2006
  • This paper addresses a formation navigation issue for a group of mobile robots passing through an environment with either static or moving obstacles meanwhile keeping a fixed formation shape. Based on Lyapunov function and graph theory, a NN formation control is proposed, which guarantees to maintain a formation if the formation pattern is $C^k,\;k\geq1$. In the process of navigation, the leader can generate a proper trajectory to lead formation and avoid moving obstacles according to the obtained information. An evolutionary computational technique using particle swarm optimization (PSO) is proposed for motion planning so that the formation is kept as $C^1$ function. The simulation results demonstrate that this algorithm is effective and the experimental studies validate the formation ability of the multiple mobile robots system.

Adaptive Optimal Output Feedback Control (적응 최적 출력 제어)

  • 신현철;변증남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.2
    • /
    • pp.31-37
    • /
    • 1982
  • A practical and robust control scheme is suggested for MIMO disciete time processes with real simple poles. This type of control scheme, having the advantages of both the adaptiveness and optimality, maybe successfully applicable to structured dynamic controllers for plants whose paiameters are slowly timevaiying. The identiflcation of the process paiameters is undertaken in ARMA form and the optimization of the feedback gain matrix is performed in the state space representation with respect to a standard quadratic criterion.

  • PDF

A Study on the Roll Eccentricity Estimation by Using an ALE

  • Cho, Kyu-Young;Kim, Sang-Woo;Lee, Young-Kow;Jo, Sung-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.180.2-180
    • /
    • 2001
  • In the hot rolling process, the RF AGC (Roll Force Auto Gauge Control) is used to control the roll gap to reduce the variation of rolling force caused by the roll eccentricity and the variation of material thickness. However the effect of the roll eccentricity cannot be distinguished. To eliminate the effect of the roll eccentricity, the roll eccentricity estimation is needed to supplement some drawbacks of RF AGC. In this paper, an ALE(Adaptive Line Enhancer) that extracts the rolling force variation due to the roll eccentricity is suggested. We also provide an algorithm that enhances the convergence time of roll eccentricity estimation. The performance improvement of the Suggested algorithm is shown via simulations.

  • PDF

ON LEARNING OF CMAC FOR MANIPULATOR CONTROL

  • Choe, Dong-Yeop;Hwang, Hyeon
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.93-115
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller(CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d. o. f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process; A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF

The ARL of a Selectively Moving Average Control Chart (선택적 이동평균(S-MA) 관리도의 ARL)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.1
    • /
    • pp.24-34
    • /
    • 2007
  • This paper investigates the average run length (ARL) of a selectively moving average (S-MA) control chart. The S-U chart is designed to detect shifts in the process mean. The basic idea of the S-MA chart is to accumulate previous samples selectively in order to increase the sensitivity. The ARL of the S-MA chart was shown to be monotone decreasing with respect to the decision length in a previous research [3]. This paper derives the steady-state ARL in a closed-form and shows that the monotone property is resulted from head-start assumption. The steady-state ARL is shown to be a sum of head-start ARL and an additional term. The statistical design procedure for the S-MA chart is revised according to this result. Sensitivity study shorts that the steady-state ARL performance is still better than the CUSUM chart or the Exponentially Weighted Moving Average (EWMA) chart.

Adaptive Control of End Milling Machine to Improve Machining Straightness (직선도 개선을 위한 엔드밀링머시인 의 적응제어)

  • 김종선;정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.590-597
    • /
    • 1985
  • A recursive geometric adaptive control method to compensate for machining straightness error in the finished surface due to tool deflection and guideway error generated by end milling process is developed. The relationship between the tool deflection and the feedrate is modeled by a modified Taylor's tool life equation. Without a priori knowledge on the variations off cutting parameters, time varying parameters are then estimated by an exponentially windowed recursive least squares method with only post-process measurements of the straightness error. The location error is controlled by shifting the milling bed in the direction perpendicular to the finished surface and adding a certain amount of feedrate with respect to the tool deflection model before cutting. The waviness error is compensated by adjusting the feedrate during machining. Experimental results show that location error is controlled within a range of fixturing error of the bed on the guideway and that about 60% reduction in the waviness error can be achieved within a few steps of parameter adaption under wide operating ranges of cutting conditions even if the parameters do not converge to fixed values.