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Adaptive Optimal Output Feedback Control
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Abstract

A practical and robust control scheme is suggested for MIMO discrete time processes with real simple

poles. This type of control scheme, having the advantages of both the adaptiveness and optimality, may

be successfully applicable to structured dynamic controllers for plants whose parameters are stowly time-

varying. The identification of the process parameters is undertaken in ARM A form and the optimization

of the feedback gain matrix is performed in the state space representation with respect to a standard

quadratic criterion.

I. Introduction

Strictly speaking, nearly all the real pro
cesses are nonlinear and time—varying.[n].
Nevertheless, many practical controllers are
designed as if the processes under control are
linear and time-invariant at its operating points,
and this approach often works well. However,
in case when the operating points change on
purpose or due to disturbances and/or the
time-varying effect of the process parameters
is not negligible, the controllers must be adap-
tive.

For single-input single output (SISO) sys-
tems, various adaptive direct control algorithms
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are proposed by many researchers!!%14],

But for general multi-input multi-output
(MIMO) systems, adaptive control schemes
are rare and further main emphasis is given
on the stability property. For example, G. C.
Goodwin and his co-workerst®? have recently
established an globally convergent adaptive
control algorithm, but the resulting controller
may not be optimal. In this paper, a method
of designing an adaptive and optimal controller
is suggested for a class of MIMO systems.

More specifically, for a given multivariable
feedback control system with output propor-

tional control structure, an on-line controller
adjustment algorithm is given in which the
adjustment is made to minimize a given cost
functional. In the suggested adaptive control
scheme, it is assumed that the changes of the
process parameters are moderately slow so that
an optimized feedback matrix at the i-th itera-
tion stabilizes the (i+1)th identified system.

- 31 -



19824 4} & 7 THAHErGE B19% 952 9%

This assumption is required to avoid the com-
putation of an initial feedback matrix which
stabilizes the overall closed loop system for
each iteration[®!

In overall system configuration is shown in
Fig. 1. For the adaptive optimal feedback
control, it is firstly needed that a statevariable
model of the controlled process be at hand.
Hence it is proposed in Section Il that a well-
known typical identification scheme be used to
obtain a matrix transfer function of the pro-
cess and then a simple realization scheme be
employed for the state-space model. In section
II1, the discrete-time optimal output feedback
matrix is investigated. In section IV, an illus-
trative example is given to show the effective-
ness of the method. In section V, some con-
cluding remarks are provided.

Operating point changes

or disturbances
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Fig. 1. Adaptive optimal control.
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Fig. 2. Flow diagram of adaptive optimal

control.

II. Identification and Realization

In this section, a well-established identifica-

tion algorithm is discussed and then a simple
state-space realization scheme is proposed
for optimal control.

Consider a linear time-invariant process
whose n-dimensional state vector x(k), m-
dimensional control vector u(k), and r-di
mensional output vector y(k) are related by

x(k+1) = A x(k) + B u(k), x ; =x(0) )

y(k) = C x(k). 2)

It is well known that the ARMA form is
often used in identification because it is con-
venient to manipulate directly the output
sequence as well as the input sequence without
the state information. So, in terms of unit
delay operator q'!, the system (1) and (2)
is assumed to be represented as

A (@Y)... 0O
. y(k)=q*
0 ... Ar @?)
By(at)... Blm(q")
' : (k) 3)
(@

~1
B“(q ). .. Brm

where

"1y = -1 -2
Alg)=1l-039" -;,q" -

-1n.

i
- “ini q s Iy <n 4)
-1 -1 Bt
Bﬁ(q )=ﬁij0+ﬁﬁlq +'”+Bijmﬁq >
my <ni (5)

for i=1, 2, .., randj=1, 2, ..., m.

For a specific output y;, (3) can be thought
of as a multiple input single-output (MISO)
system, for each i=1, 2, ..., 1. If welet

Qil = [ail’ ey aini, Bilo’ ceny ﬂﬂmll, Bi2 o’
8. ] (6)

1mmim

and
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wi' = [Yl(k), ey Yl (k‘ni+1)s uy (k)’ sees

u,(k-mﬂ), uy (k), ..., um(k-mim)] , (7

where ()’ means the transpose, an orthogonal
projection of Q(k-1) on the hypersurface
defined by the equation y(k)-¥ (k-1)Q=0
yields the following identification algorithm[?]

Q,(k) = Qk-1) + ¥ (k-1) [A + (k1)
Yik-DIT - [y(k) - /(1) Qik-1)),

for i=1,2,...,1 (8)

where A in (A + ¢ (k1) Y (k-D] is incor
porated to avoid any singular case.

Recall that, from the system equation (3),
one can easily obtain the following matrix
transfer function:

Bii@)/A (@) -
G(at)=g"

B (@A) -

B, (@')A(q™)

B0 )/a @) O)

Each entry of G(q™!) is to be determined by
using the algorithm in Eq. (8).

Next, in order to design an optimal feed-
back controller, Eq. (9) is represented by
a state space model., This realization can be
done using the Smith-McMillan form. While
this form has the advantage of yielding a mini-
mal realization directly as a combination of
partial realizations related to the elementary
matrices of rank 1, it has a drawback due to
the amount of computations requiredm.

In case the process has only simple real
poles, one can get the Jordan form easily,
using the Gilbert’s method. For multiple
poles, the realization may be obtained by
decomposing the transfer matrix into a sum

of rank one matrices. In this approach, non-
minimal equations are usually con-
structed first and then reduction to minimal

state

representation is followed. For complex
poles, the transformation technique given
in{131 may be used.

Hence, for simplicity, we confine our

interests to the processes whose poles are
simple and real.
Let all the poles of G(q'!) in Eq. (9) be

A, A, e, ?\no where )xi > )\j if i > j. Also,

let Pi be the rank of Mi’ where
_ lim . et

M, = Y (a-\)* G(a™) (10)

s

Then _El P. = n = the number of states.
1=

Lemma JI-1

Suppose G(q™!) in Eq. (9) has real poles with
simple order. Then the Jordan representation
(A, B, C) of G(q") is given as follows:

Py P,
—

A=mwihhwm'huwhhqhdﬂn

B,
By ———~-——~—
) Bno
F ! ! I
ce ¢, gt C,
|2 | Tng
| |

where (Pi X m) matrix Bi and (r x Pi) matrix
Ci satisfy

CB. = M,
ii i

fori=1, 2, ..., n..

Proof:
Since each element of G(q') is proper,
G(q!) can be decomposed as,
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n
. 1
G‘=EhM 12
(q)qu_)\ (12)

where M, is given by (10). Since )xi’s are in
simple order, one can take A asin (11).

From the relation

G(q')=C(l- A" B,

one can get
(13)

c.b, .yl

-1
Glg™)= ik kj

{ -a
From equations (10) to (13), one can easily
obtain

C.B.=M. forall i=1,2,..,n . (14)

ii i (o)

Solving (14) for Ci and Bi is not compli-
cated. However, in real online control, there
may be errors in identification and in numerical
calculation. Moreover, the process itself may
be higher order than the identified model.
In' such cases least squared-error fitting is
reasonable. Here we suggest a method in which
pseudo inverses are used iteratively.

Lemma II-2

Let Bi’ Ci’ Mi be pxm, X p, rXxmma-
trices respectively, where p < pi = rank of M,
Then
(1) for a fixed Bi’

C.=M. B. [B. B.']"! minimizes
i iti ttiti
I M, - CB, Il
(2) For a fixed Ci
- ' -1 ' P
[Ci Ci] Ci Mi minimizes
fi Mi— CiBi it .

The proof of lemma II-2 is lengthy but
straightforward.[m] So it is not detailed. Note
that, by using the above results of (1) and (2)
in lemma II-2 alternatively, one can get Bi

and Ci in least squared-error sense.

In practice, the problem of finding poles
of the\process during on-line control must be
solved. When we know the dynamics of the
process completely, this may be easy. But
in many cases we do not know enough about
the process to predict the variations of process
poles. As a solution, the following algorithm
is suggested. Here the number of states in
Jordan canonical form is not fixed, but it
is determined by the two given error bounds
eand§.

The algorithm can be described as follows:
1. Find all roots of the equation g™ Ai (gl =

0 for =1, 2, ..., r. There will be n, = i—-zr-:l n

roots.

Set w; = 1fori=l,2,...,n
2. Check if D\i—)\j | <, for every i#

If above condition is satisfied, set )‘i as

(w ?\ + w A )/(w + w.) and remove 7\j and

setw asw + 4,0
3. For each )\ calculate M using (10).

4. For each M determme the minimal rank

Pi of Ci and B]. to satisfy the following

criterion.

<38 15
L- Il (1)

5. Calculate the system matrices (A, B, C)
In step 2, one should set € small enough so
that Eq. (15) can be satisfied for the given §.
With this algorithm the maximum number
of eigenvalues is n,, and the number of states
is the total sum of Pi’s.

1. Optimization of Output Feedback Matrix

Levine and Athans'®! and many others
studied the continuoustime constrained state
feedback problem. For discrete time systems,
explicit form of necessary condition is given
int*3) which an optimal output feedback gain
matrix must satisfy. In this section, a discrete-
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time problem of determining the output
feedback gain matrix and some aspects in
solving the discrete-type Lyapunov equations
are discussed. A simple method in calculating
the optimal stepsize is also presented.

Given the system represented by (1) and
(2), let the performance measure be given by,

I=

N =

o
- Z {x'(k) Qx(k)+u'(k)Ru(k)]
k=0 (16)
where Q is positive semidefinite and R is
positive definite. Using output feedback
control,

u(k) = -F y(k) Q17

(16) can be rewritten as
J=—1~tr{ z Ap® QA XO} (18)
where Ap = A — BFC, X = x(0) x'(0), and
Q =Q+C'F RFC.
Lemma III-1.

When there exists an F for which AF is
stable, the necessary condition for F to be
optimal with respect to (18) is that

(RFC — B'MAF)LC' =0 (19)

where L and M are respectively the unique
positive semidefinite solutions of

AFLAF —L=—XO (20)
AF MAF— M=-Q Q2D
[1s]

The proof of the lemma III-1 is given in

With (19) one can optimize F by using the
gradient or the conjugate gradient algori-
thms!®!  However, solving the discrete type
Lyapunov equation, in this way, is the most
time-consuming job. The method given inf8!
requires transformation to Jordan canonical

9]

form, and one in needs transformation

to Schur form, hence they are efficient if
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one want to obtain various solutions for dif-
ferent values of 6 But in our case, AF will
change for each iteration with constant . So
the following iterative method is suggested:

Mjy) =Ap M{AR+Q 22)

Ly = ApL AR +X, (23)

It is easy to see that (22) and (23) converge
when AF is an asymptotically stable matrix.
This iterative algorithm, having merits of being
simple to program, is capable of handling
Further
more, assuming that the changes of AF, and
hence M, are small between one iteration of
identification and optimization, the calculation
time will not be large. Only one drawback of
(22) and (23) is that the convergence rate is
highly dependent on the moduli of eigenvalues
of AF'

In the iterative identification and optimiza-
tion, each iteration should be completed as
soon as possible. Hence in finding an optimal

l

Calculation of J(0)
Set aj

easily complex or multiple poles.

@

step size

G ow o,

1 2
I(3))md(n

2 2
J(x,) -a ‘g . L
1 ay l) 1 (az) + 1, )1(0)

x, e - e aGe) + (a) - 2)30

Fig. 3. Flow diagram of stepsize adjustment

algorithm.
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stepsize, a rough and fast algorithm is used,
which is given in Fig. 3, which is similar to
that inf° but is far more simple. In the
figure, @ means a step size, and J is set to be
function of «. Then J(o) means the value for
an initial feedback matrix.

IV. Example

The algorithms suggested in Sections II and
IIl are summarized in the diagram shown in
Fig. 2. To show the effectiveness of the
scheme, an example is provided in the fol-
lowing: )

Example

An output regulation problem is considered
for a process whose system matrices are given
by

A= diag. [.96 .92 .84]

B=[.3.0 c=1{1. 2 o.]
0 4 0.1. 1
1.2

Let In mean an identity matrix of dimension
n. For the criterion J in (18), let

Q=C1C

R=10-1,
and

Xo=In

where n becomes in this example 3 or 4 de-
pending on the number of identified states at
each iteration. The optimal constant output
feedback matrix is then calculated as

F= [.118 -.019]
.168 114

Suppose, during 0 < k < 5, the system
matrix A is smoothly changed to the following:

A=diag. [1.02 976 .892]

For the initial state x(0)=[1.77-.78 1.19],
the results of Sections II and III are applied

and the responses of the optimal constant
output feedback and the adaptive optimal
output feedback are compared in Fig. 4. As
is obvious from the simulation result, the
adaptive control regulates the process while
the fixed output feedback control does not.
It is found from simulations that the algorithm
presented in this paper works well for charac-
teristic value variations as well as for system
gain variations.

Adaptive output feedback

_______ Constant output feedback

Fig. 4. Comparison of the responses for the
example.

V. Conclusions

A control scheme which has the properties
of adaptivity and optimality is suggested for
the processes with real and simple poles.
Extension to general processes is briefly dis-
cussed. Some practical aspects are considered
for on-line control with an approximate realiza-
tion method. By only specifying error bounds,
one can get an approximate realization of
Jordan canonical form for a_given matrix
tranifer function. This concept can also be
applied to model reduction problems. Finally
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using gradient of a standard criterion function,
a relatively simple feedback matrix modifica-

Adaptive Optimal Output Feedback Control

tion algorithm is described.

plus

It is remarked that,
augmented state vector, adaptive proportional
integral (PI) controllers and adaptive
dynamic controllers can also be designed using

the method presented in this paper.
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