• Title/Summary/Keyword: Adaptive Process

Search Result 1,467, Processing Time 0.025 seconds

On the Optimal Adaptive Estimation in the Semiparametric Non-linear Autoregressive Time Series Model

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.149-160
    • /
    • 1995
  • We consider the problem of optimal adaptive estiamtion of the euclidean parameter vector $\theta$ of the univariate non-linerar autogressive time series model ${X_t}$ which is defined by the following system of stochastic difference equations ; $X_t = \sum^p_{i=1} \theta_i \cdot T_i(X_{t-1})+e_t, t=1, \cdots, n$, where $\theta$ is the unknown parameter vector which descrives the deterministic dynamics of the stochastic process ${X_t}$ and ${e_t}$ is the sequence of white noises with unknown density $f(\cdot)$. Under some general growth conditions on $T_i(\cdot)$ which guarantee ergodicity of the process, we construct a sequence of adaptive estimatros which is locally asymptotic minimax (LAM) efficient and also attains the least possible covariance matrix among all regular estimators for arbitrary symmetric density.

  • PDF

Semi-automatic Field Morphing : Polygon-based Vertex Selection and Adaptive Control Line Mapping

  • Kwak, No-Yoon
    • International Journal of Contents
    • /
    • v.3 no.4
    • /
    • pp.15-21
    • /
    • 2007
  • Image morphing deals with the metamorphosis of one image into another. The field morphing depends on the manual work for most of the process, where a user has to designate the control lines. It takes time and requires skills to have fine quality results. It is an object of this paper to propose a method capable of realizing the semi-automation of field morphing using adaptive vertex correspondence based on image segmentation. The adaptive vertex correspondence process efficiently generates a pair of control lines by adaptively selecting reference partial contours based on the number of vertices that are included in the partial contour of the source morphing object and in the partial contour of the destination morphing object, in the pair of the partial contour designated by external control points through user input. The proposed method generates visually fluid morphs and warps with an easy-to-use interface. According to the proposed method, a user can shorten the time to set control lines and even an unskilled user can obtain natural morphing results as he or she designates a small number of external control points.

A Study on Robust Controller Design of Multi-Joint Robot Manipulator Using Adaptive Control (적응제어기법에 의한 다관절 로보트 매니퓰레이터의 견실한 제어기 설계에 관한 연구)

  • Han, Sung-Hyun;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.108-118
    • /
    • 1989
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonliearity and parameter uncertainty in robot dynamics model. In this paper, an adaptive control scheme for a robot manipulator is proposed to design robust controller using model reference adaptive control technique and hyperstability theory but it does away with] assumption that the process is characterized by a linear model remaining time invariant during the adaptation process. The performance of controller is demonstrated by the simulation about position and speed control of a six-link manipulator with disturbance and payload variation.

  • PDF

Adaptive Active Noise Control of Single Sensor Method (단일 센서 방식의 적응 능동 소음제어)

  • 김영달;장석구
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.941-948
    • /
    • 2000
  • Active noise control is an approach to reduce the noise by utilizing a secondary noise source that destructively interferes with the unwanted noise. In general, active noise control systems rely on multiple sensors to measure the unwanted noise field and the effect of the cancellation. This paper develops an approach that utilizes a single sensor. The noise field is modeled as a stochastic process, and an adaptive algorithm is used to adaptively estimate the parameters of the process. Based on these parameter estimates, a canceling signal is generated. Oppenheim assumed that transfer function characteristics from the canceling source to the error sensor is only a propagation delay. This paper proposes a modified Oppenheim algorithm by considering transfer characteristics of speaker-path-sensor This transfer characteristics is adaptively cancelled by the proposed adaptive modeling technique. Feasibility of the proposed method is proved by computer simulations with artificially generated random noises and sine wave noise. The details of the proposed architecture. and theoretical simulation of the noise cancellation system for three dimension enclosure are presented in the Paper.

  • PDF

Developing Adaptive Math Learning Program Using Artificial Intelligence (인공지능을 활용한 맞춤형 수학학습 프로그램 개발)

  • Ee, Ji Hye;Huh, Nan
    • East Asian mathematical journal
    • /
    • v.36 no.2
    • /
    • pp.273-289
    • /
    • 2020
  • This study introduces the process and results of developing an adaptive math learning program for self-directed learning. It presented the process and results of developing an adaptive math learning program that takes into account the level of learners using artificial intelligence. We wanted to get some suggestions on developing programs for artificial intelligence-based mathematics. The program was developed as Math4U, an application based on smart devices in the "character and expression" area for 7th grade. The Application Math4U may be used differently depending on its purpose. It is also expected to be a useful tool for providing self-directed learning to students as the basis for educational research using smart devices in a changing educational environment.

Wheel Slip Control of ABS Using Adaptive Control Method (적응제어 기법을 적용한 ABS의 바퀴 슬립 제어)

  • Choi, Jong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.71-79
    • /
    • 2006
  • ABS is a safety device for preventing wheel locking in a sudden baking. Its control methods are classified into three types; deceleration control, wheel slip control and deceleration/acceleration control. The braking force takes the influence of the friction coefficient between road and tire, which in turn depends on the wheel slip as well as road conditions. In this paper, it has been proposed the wheel slip control system to apply the adaptive control method at the ABS. To maintain wheel slip to desired wheel slip, it have been done the linearization and designed the adaptive controller to apply gradient method based on the reference model. It is illustrated by computer simulations that the proposed control system gives good performances and adaptation to parameter variation.

  • PDF

Decomposition-based Process Planning far Layered Manufacturing of Functionally Gradient Materials (기능성 경사복합재의 적층조형을 위한 분해기반 공정계획)

  • Shin K.H.;Kim S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.223-233
    • /
    • 2006
  • Layered manufacturing(LM) is emerging as a new technology that enables the fabrication of three dimensional heterogeneous objects such as Multi-materials and Functionally Gradient Materials (FGMs). Among various types of heterogeneous objects, more attention has recently paid on the fabrication of FGMs because of their potentials in engineering applications. The necessary steps for LM fabrication of FGMs include representation and process planning of material information inside an FGM. This paper introduces a new process planning algorithm that takes into account the processing of material information. The detailed tasks are discretization (i.e., decomposition-based approximation of volume fraction), orientation (build direction selection), and adaptive slicing of heterogeneous objects. In particular, this paper focuses on the discretization process that converts all of the material information inside an FGM into material features like geometric features. It is thus possible to choose an optimal build direction among various pre-selected ones by approximately estimating build time. This is because total build time depends on the complexity of features. This discretization process also allows adaptive slicing of heterogeneous objects to minimize surface finish and material composition error. In addition, tool path planning can be simplified into fill pattern generation. Specific examples are shown to illustrate the overall procedure.

Analysis and Compression of Spun-yarn Density Profiles using Adaptive Wavelets

  • Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.88-93
    • /
    • 2006
  • A data compression system has been developed by combining adaptive wavelets and optimization technique. The adaptive wavelets were made by optimizing the coefficients of the wavelet matrix. The optimization procedure has been performed by criteria of minimizing the reconstruction error. The resulting adaptive basis outperformed such conventional basis as Daubechies-5 by 5-10%. It was also shown that the yarn density profiles could be compressed by over 95% without a significant loss of information.

Adaptive filter Design for INS/GPS (INS/GPS를 위한 적응필터 구성)

  • Yu Myeong-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.717-725
    • /
    • 2005
  • The adaptive filter is proposed for the INS/GPS. The proposed filter can estimate the variance of the process noise using the residual of the filter. To verify the efficiency of the adaptive filter, it is applied to the loosely-coupled INS/CPS that employs the additive quaternion error model. Simulation results demonstrate that the proposed filter is more effective in estimating the attitude error than EKF.

A Study on the Application of Adaptive Control Constraint to Maintain Constant Cutting force in Turning (선삭에서 일정 절삭력 유지를 위한 구속 적응제어에 관한 연구)

  • 김인수;황홍연;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.376-382
    • /
    • 1986
  • Adaptive control constraint (ACC) is applied to a turning process to keep the cutting force constant while the cutting conditions vary. In this system, a given reference force is compared with the measured cutting force and difference is input to the controller to adjust the feed. Since it is found that the effective ACC loop gain depends on both depth-of-cut and spindle speed and thereby influence the system stability, a simple computer algorithm is built in the controller to maintain the stability of the whole system by on-line estimation of the process parameters during cutting.