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ABSTRACT

We consider the problem of optimal adaptive estimation of the eu-
clidean parameter vector @ of the univariate non-linear autoregressive
time series model {X;} which is defined by the following system of
stochastic difference equations ; X, = P10 Ti( X)) +e,t=1,---.n
, where @ is the unknown parameter vector which describes the deter-
ministic dynamics of the stochastic process {X;} and {e;} is the se-
quence of white noises with unknown density f(-) . Under some general
growth conditions on T;(-) which guarantee ergodicity of the process, we
construct a sequence of adaptive estimators which is locally asymptotic
minimax (LAM) efficient and also attains the least possible covariance
matrix among all regular estimators for arbitrary symmetric density.
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1. INTRODUCTION

Recently, motivated by the current interest in the non-linear phenomena in
science and engineering, non-linear time series models are generally regarded
to form one useful class of tools in the time series analysis. The practical
relevance of non-linear analysis of time series data is now widely recognized
in various applications. For example Tong (1983) provides many interesting
examples of the non-linear time series models including well-known threshold
time series models. See also Tong (1990) for more recent review on the topic.

In this paper we consider univariate non-linear time series model {X:} de-
fined by the following system of 1-st order autoregressive stochastic difference
equations :

P
Xe=3 0 Ti(Xe-1) + e, t =12, (1.1)

i=1
where {T;(-)} is the vector of basis functions and 0T = (8,,---,0,) is the vector
of parameters identifying systematic component of the model and random vari-
ables {e;} are white noise series with unknown density function f(-). Above
type of models is called semiparametric model in the statistical literature
because it incorporates both the usual parametric component § and the non-
parametric component f(-) in the model. See Begun et. al.(1983) for more
examples of semiparametric models. Such general classes of non-linear autore-
gressive (AR) processes include many types of non-linear time series models
considered in the literature by the appropriate choice of basis functions 7;(-).
For example we may choose spline functions as basis functions in order to get
the natural generalization of the threshold models of Tong (1983). See chap 3

of Tong (1990) for more examples.

One of the important issues in this semiparametric model is the efficient
estimation of the parameter vector § when the density f(-) of the noise {e:}
is regarded as unknown nuisance function . Previous works in this area were
mostly concerned with inferences in the linear ARMA processes as in Be-
ran(1976) and Kreiss (1986).

In this paper we will identify new kind of general growth conditions on
Ti(-) which will guarantee not only the ergodicity of the process {X,} but also
the existence of optimal adaptive estimators. Then we construct a sequence of
optimal adaptive estimators which is LAM-efficient and attains the least pos-
sible covarince matrix among all regular estimators with respect to arbitrary
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symmetric density f(-).

This paper is organized as follows : In section 2 we first establish the
local asymptotic normality (LAN) of the process {X,} and then introduce two
asymptotic optimality criteria for the sequence of estimators of 6 based on
LAM bound and convolution theorem respectively. In section 3 we construct a
sequence of semiparametric adaptive estimators which satisfies two optimality
criteria simultaneously for a wide class of symmetric density functions fG).
Finally, in section 4 we discuss the possibility of extending main results to
other class of non-linear time series models. All technical proofs are given in
section 5.

2. LOCAL ASYMPTOTIC NORMALITY

First we assume the following regularity conditions on the process {X,}.
A1l : For each § € © , © open parameter set in RP, we have
(i) |T(z:0)| S (1= O)fe| +c, € B,

(2.1)
(ii) sup |Ti(z)| <a+blz|, z€R
1<i<p

where T(z;0) = 0., 0; - Ty(z) ,0< 6 < 1, a,b,¢,> 0 .

A2: f(z)is an absolutely continuous function with finite positive Fisher in-

formation I(f) = [*2(f'/f)*f(z)dz > 0 .
A3: f(z) >0,z € R, and [*2 22f(z)dz < oo .
A4 : The density of the stationary distribution f(z; 0) satisfies :
J(2;0,) — f(2;0), z € R, if 0, > 0 as n — oo. (2.2)
Remark 1. Conditions Al and A3 are sufficient conditions for the geomet-

ric ergodicity of the process {X;} and the function || is often called Lyapunov
function for the Markov process {X;}. See Tong (1990) for more details on
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the application of the Lyapunov function in the non-linear time series model.

Remark 2. Simple sufficient conditions for Al is the following :

P
ITi(z)| < a;+ b;|z|,z€ R, i=1,---,p and Z|9,~|b,- <(1-9)

=1

where a;,b; >0, 0 < 6 < 1.

Now we note that the joint density of the simultaneous distribution of the
data vector (Xg,---,X,) can be expressed in the form :

(Xos0) TT £((0))

where ¢;(0) = X; — T(X;-1;0) is the residual calculated from (1.1) . Therefore

we can write the likelihood ratio of the random vector (Xo,- -, X,) as follows :
AP.(0) _ [(Xei) o1 flec= (0= 0)"X(i = 1) 03
dPn(BO) f(X0§ 00) =1 f(ei)

where the abbreviations X7(t) = (T1(X,),---,T,(X,)) and e, = €,(6p) have

been used and P,(6) denotes the probability measure of the random vector

(Xo,- -+, X,) on R™*! when the true parameter vector is given by 6.

After these preliminaries we can now establish local asymptotic normality
(LAN) property of the likelihood ratio of the process {X,}.

Theorem 1. (Local Asymptotic Normality) Let h, € R? be a bounded
sequence and 0, = 6, + h,/ /n. Let the conditions Al, A2, A3 and A4 be
satisfied and let

An8) =23 Y(e; ()X (i — VYR, &= F/f (2.4)
Then we have , as n — o©

log[dPn 6, /dPn 0,]) = hT An(80) + (1/2)hX I(£)T(80)hn + o(1) in Py 4, probability (2.5)

and
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L(Bn(0)|Prg,) => N(0,1(f)T(60)) | (2.6)
where I'(60) = E[X(j)X7(j)] and ” = " denotes weak convergence.
From the above theorem we can obtain the following result immediately.
Corollary 1. Under the same assumptions as in Theorem 1,

{Pns,} and {Pny,} are contiguous in the sense of Roussas (1972)
if A, is bounded.

Remark 3. See Roussas (1972) for more details on the applications of
contiguity in statiatics.

One immediate consequence of the above results is the following theorem
on the locally asymptotic minimaz (LAM) lower bound for the risk of estima-
tors of 4.

Theorem 2. (LAM lower bound ) Suppose that the loss fuction I(-) is
lower semicontinuous and subconvex. Then

Jim liminfiof  sup / I(Va(b, — 8))dP., > EI(Z)  (2.7)
k—oo =0 4 e B(60,k/\/7)

where B(fo, k/\/n) = {6 € R? : |0—0,| < k/\/n},Z ~ N(0,(1(f)T)~!) and ||

is any standard norm in R? . Here infimum is taken with respect to arbitrary

estimators 8,, of 6.

Above theorem suggests the following definition of the asymptotic efficiency
of the sequence of the estimators.

Definition 1. A sequence of estimators {f,} is called LAM-efficient if
it attains the LAM lower bound (2.7) for any bounded continuous subconvex
loss function I(-).

In order to define alternative definition of efficiency we introduce the con-
cept of regular sequence of estimators of 4.



154 Adaptive Estimation in Non-linear AR(1) Process

Definition 2. {T,} is said to be a regular sequence of estimators if , for any
sequence 0, = 0y + h,/\/n,h, = h + o(1), we have

L(V/(Ty = 0,)|Prap,) = L(U) as n — oo (2.8)

and the limit distribution £(U) does not depend on the choice of the sequence
0,.

For regular sequence of estimators we have the following convolution theo-
rem.

Theorem 3. ( Convolution Theorem) Let {7,,} be a regular sequence of
estimators. Then

L(VA(Ty = 00)|Prg,) = LIZ+V) asn — oo (2.9)

where Z ~ N(0,(I(f)T')"!) and V is a random variable on R? which is inde-
pendent of Z.

Now we introduce the following alternative definition of the asymptotic ef-
ficiency of the regular sequence of estimators.

Definition 3. Regular sequence of estimators {7},} is said to be regular
efficient if the asymptotic distribution in (2.9) is N(0, (I(f)I')~1).

In order to show that a sequence of estimators {7} is efficient in either
sense, it is enough to show that they are asymptotically linear ;

To = 0o + [/ 1(f)]An(86)/ v/ + 0(1/\/R) in Prg, probability (2.10)

where A, (6) = (1/v/n) 37, ¥(€;(0)) X (j — 1) is the efficient score function
for the parameter 6.

Remark 4. Regularity of the asymptotically linear sequence of estimators
is immediate consequence of the LAN property and the standard contiguity
argument. See (3.3) of Kreiss (1986) for the similar result in the linear AR(p)
model.
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Standard method of constructing efficient estimators begins with the existence
of the preliminary \/n-consistent estimator {f,} of 8. For technical reason, we
also use discretized version 8, of the 6, which is formally defined as a point
in n=1/2ZP closest to 6,. Here Z denotes the set of all integers. In this paper
we choose the usual least squares estimator of 8 as an initial estimator {0~n}
which was shown to be \/n-consistent by Klimko and Nelson (1978) under the
general conditions including A1, A2 and A3. Furthermere, we also assume the
following additional regularity conditions for the score function v(-) = f'/f():

AS5: limy_o f[i(x + h) — ¥(x)]2f(z)dz =0
A6: limu_o [[(¥(x + k) — o(z))/ k] f(z)dz = —I(f)/2.
Then we have the following result on the efficient estimator for fixed f().

Proposition 1. ( Efficient estimator for fixed f(:) ) Let {0,} be a se-
quence of discrete /n-consistent estimators. Then the sequence of estimators
{6.} defined below is asymptotically linear and efficient.

b = 6, + [/ 1(1)]A(6,)/ vV (2.11)
where [’ = S X(j — 1)XT(j — 1)/n.

- Since above estimator {§,} depends on the unknown density f(-) of the
white noise, one natural question is whether it is possible to construct a se-
quence of estimators which is independent of the density f(-) of the noise but
is asymptotically linear simultaneously for a wide class of densities f(-). Such
an estimator, if it exists will be called optimal adaptive estimator of # for the
given class of densities.

3. OPTIMAL ADAPTIVE ESTIMATES

In order to find the optimal adaptive estimator, we first construct appro-
priate estimates of the score function (-) and the Fisher information I (f) and
then show that the corresponding sequence of estimators is asymptotically lin-
ear for each of the symmetric density f(-). Our method of construction follows
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closely that of Schick (1987) in the semiparametric linear regression model. See
Kreiss (1986) for the similar but more complicated version. First we introduce
following notations ;

(G) k(z)=e"/(1+e ") z€R
(i) Sale) = [ F(x = ant)k(t)dt

(iii) fa(z;0) = an + z—j k((z — ei(0))/a,)/nax (3.1)

(V) fos(230) = F — K((z = ¢5(0))/an)/na
(v) fnjk($§9) fnj — k((z — ex(0))/an )/nay,

where a,, = o(1) and ¢;(8) = X; — 6T X(i — 1) . Then we define g,; to be the

anti-symmetrized esimator of ¥(-) given by ;

dnj(30) = [f1;(2)/ faj(2) = fas(=2)] fai(=2)1/2 (3.2)
where fnj(x) = fn]-(:c;ﬂ) and j=1,---,n

Let

22 0)X(j—1)/vn (3.3)
=1
be the estimator of A,(f#) and then let us define the estimator ;
07 = 0, + 071/ 1.(8))An(00) Vo (3.4)

with
in(én)=4§_:éjn(ej(én);én)/n, fn=;X(j)XT(j>/n (3.5)

where {0,} is a sequence of discrete \/n-consistent estimators of .
We will prove that estimator (3.4) is optimal adaptive for a wide class of
symmetric densities f(-). Now we first establish the following auxiliary lemma.

Lemma 1. Under the condition (i) of Al, there exist constants 0 < p <
1,C4,Cqy > 0 such that
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1Xi| < Cy+C, Z P \e;| + p'| Xo| for i € ZF. (3.6)
j=1
Now we are ready to establish following important proposition.
Proposition 2. Let {#,} be a sequence of discrete y/n-consistent estima-
tors of 8. Let a, = o(1) and a;®n~! = o(1) as n — co. Then
An(6,) — An(8,) = 0(1) in P,e, probability. (3.7)

Remark 5. While Kreiss (1986) considered similar adaptive estimator in
the ARMA model, his proof cannot be carried over to the non-linear time
series models considered in this paper. Qur proof of (3.7) depends heavily on
the existence of the appropriate Lyapunov function which reflects intrinsically
non-linear property of the process {X;} .

As an immediate consequence of the above proposition, we can establish
the optimality of the adaptive estimator {8 }.

Theorem 4. ( Optimal Adaptive Estimator ) Let the conditions Al, A2,
A3, A4 A5 and A6 be satisfied and the assumptions of Proposition 2 be satis-
fied. Then the sequence of estimators

a —_

6 = 6n + (07 / 1a(0)) A0 (6) [ V0 (3.8)
is asymptotically linear and as n — oo
C(\/—( — 6)|Png,) = N(O,[CI(H]™) (3.9)

for any symmetric density f(-) . Therefore {02} is LAM and regular-efficient.

4. DISCUSSIONS

There are several possible generalizations of the results of this paper to
other class of semiparametric non-linear AR models. First we may relax the
symmetry requirement f(z) = f(~z) and obtain adaptive estimator for a much
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wider class of non-symmetric densities f(-) with zero mean and finite variance
with additional technical tools . As a second important extension, we note
that the proofs of the main results of this paper does depend on some general
non-linear properties of the process {X;} which can be satisfied in a variety
of non-linear time series models. For example, we can obtain essentially the
same optimality results for the process {X;} defined by ;

P
Xe=) 0T(Xi-1;0) +e, t€Z (4.1)

=1
where T;(:; ¢) is a function on R which depends on the extra parameters ¢
and satisfies similar growth condition as Al. Fussy extension of the familiar
threshold model considered by Chan and Tong (1986) provides typical example
of non-linear model of the type (4.1) which allows the same type of adaptive
estimation. Both of these possibilities will be treated in a subsequent paper.

5. PROOFS

Proof of Theorem 1. The proof follows closely the similar proof of
Theorem 3.1 of Kreiss (1986) with minor modifications.

Proofs of Theorem 2. and 3. Both follow directly from LAN property
of the process {X;} by the standard arguments as are given in the proofs of

Theorems 3.1 and 3.2 of Begun et. al. (1983).

Proof of Proposition 1. Following essentially the same argument as is
given in the proof of Theorem 2.4 of Beran (1976), we have

A(0,) = AL (O)+[TI(F)]'Vr(8,—8)+0(1) in P, 4, probability. (5.1)
Above identity together with discreteness of 8, completes the proof.
Proof of Lemmma 1. By the condition (i) of Al, we have the inequality :

|T(z;0,)] < (1 —=6)|z|+¢c, € R (5.2)
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where T'(z;0) = Y7, 6,T;(z), 0 < 6 <1,a,b6> 0. Then we note

| X; | = [(T( i-1;0n) + e
(1 —5)| i-1)| + ¢+ e (5.3)

< Z(l — 8)[lei—;| + €] + | Xo|(1 — 6)’
Above inequality together with p = 1 — 6 finishes the proof.

Proof of Proposition 2. Let 8, be any sequence such that 8, =
b0 + hn/v/n, hn = o(1). Then from the discreteness of 4§, , it suffices to prove

A,(8,) — An(6,) =o(1) in P, probability. (5.4)
First we note that

Falldn(6a) ~ An(0.)]” (5.5)
—ZE [IXG = DI [lduia:00) = 9@ F(2)de] /m

by the symmetry of ¢.;(-) and #(-) . Now Lemma 1 and the condition (ii) of
Al imply that (5.5) is bounded above by

1/nZE ZkZp"“'“le]llekI [~ z)dx} (56)

where p =1 — 6. Next we note that
sup Eu [l [ lin(z) = (@) ()de]
<28, [lei [ldns(a) - 6(&) f(2)de] (5.7
428, [les (@) = duis (@) f(2)de]
< OB [ [lin-2(e) = $()*f(2)da] +20(1)az?n""
= o(1)

from the inequalities (3.15) and (3. 16) of Schick (1987) where §,,;() and §y(-)
are the estimators of ¥(-) based on fmJ and fn respectively. By the similar
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argument, we obtain
sup E, [lsexl [lan(x) — () f(2)da] = o) (5.8)

Now (5.7) and (5.8) together with (5.6) imply that left hand side of the (5.4)
is o(1) as n — oo. This completes the proof.

Proof of Theorem 4. The proof follows directly from Proposition 1 and
Proposition 2 by the discreteness of 8,, .
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