• Title/Summary/Keyword: Adaptive Observer

Search Result 338, Processing Time 0.028 seconds

Direct Torque Control of Induction Motors Using Closed Loop Flux Observer (폐루프 자속관측기를 이용한 유도전동기의 직접토크제어)

  • Geum, Won-Il;Ryu, Ji-Su;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1046-1049
    • /
    • 2000
  • A direct torque control(DTC) based sensorless speed control system which employs a new closed loop flux observer is proposed. The flux observer is an adaptive gain scheduling observer where motor speed is used as the scheduling variable. Adaptive nature comes from the fact that the estimates of stator resistance and speed are included as observer parameters. Simulation results show that the proposed flux observer gives better control and estimation results than conventional flux estimator specially in low speed region.

  • PDF

A Rotor Speed Estimation of Induction Motors Using Sliding Mode Cascade Observer (슬라이딩 모드 축차 관측기를 이용한 유도 전동기 속도추정)

  • 김응석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.145-153
    • /
    • 2004
  • A nonlinear adaptive speed observer is designed for the sensorless control of induction motors. In order to design the speed observer, the measurements of the stator currents and the estimates of the rotor fluxes are used. The sliding mode cascade observer is designed to estimate the time derivatives of the stator currents. The open-loop observer is designed to estimate the rotor fluxes and its time derivatives using the stator current derivatives. The adaptive observer is also designed to estimate the rotor resistance. Sequentially, the rotor speed is calculated using these estimated values. It is shown that the estimation errors of the corresponding states and the parameters converge to the specified residual set. It is also shown that the speed controller using these estimates is performed well. The simulation examples are represented to investigate the validity of the proposed observers for the sensorless control of induction motors.

Sliding mode control with adaptive VSS observer

  • Chen, Yi-Feng;Tsutomu Mita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1924-1929
    • /
    • 1991
  • The conventional sliding mode control and variable structure control (VSC) of nonlinear uncertain system are well known for their robust property and simplity of control law. However, the use of them is only pardonable on the assumption that the upper-bound of parameter variation or nonlinearity is known and that the complete information about state is available. Though the former has been solved with adaptive robust control theory recently, the latter seems not to be solved. In this paper, we try to solve this problem using the technique of VSS adaptive robust control theory. That is, we propose a VSS adaptive observer and a sliding mode control incorporated with this observer. We can prove the robust stability of the closed system applying the Lyapunov's second method.

  • PDF

Compensative Microstepping Based Position Control with Passive Nonlinear Adaptive Observer for Permanent Magnet Stepper Motors

  • Kim, Wonhee;Lee, Youngwoo;Shin, Donghoon;Chung, Chung Choo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1991-2000
    • /
    • 2017
  • This paper presents a compensative microstepping based position control with passive nonlinear adaptive observer for permanent magnet stepper motor. Due to the resistance uncertainties, a position error exists in the steady-state, and a ripple of position error appears during operation. The compensative microstepping is proposed to remedy this problem. The nonlinear controller guarantees the desired currents. The passive nonlinear adaptive observer is designed to estimate the phase resistances and the velocity. The closed-loop stability is proven using input to state stability. Simulation results show that the position error in the steady-state is removed by the proposed method if the persistent excitation conditions are satisfied. Furthermore, the position ripple is reduced, and the Lissajou curve of the phase currents is a circle.

Sensorless Self-Tuning Adaptive Control of Nonlinear Modeled DC Motors Using DSP (DSP를 이용한 비선형 모델을 갖는 직류 전동기의 센서없는 자기동조 적응제어)

  • 김윤호;국윤상;유연식
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.49-56
    • /
    • 1995
  • In this study, self-tuning adaptive control using state observer is developed. Self-tuning adaptive controller that estimates the parameters of the system in real time and generates the optimal control signals has robust characteristic about varying load and external disturbances. In addition, state observer without sensors is applied, thus the control can be performed more quickly and exactly. Since chopper is used commonly in practical drives, the characteristics of the chopper are included in state observer algorithm, which, in turn, makes the system exact estimation. Since series type DC motor has nonlinear models, linearizing approach are investigated. to realize the proposed algorithm it requires fast calculation in real time. TMS320C31, digital signal processor, is applied to realized the adaptive control algorithms.

  • PDF

Adaptive Observer Based Speed Control of SI Engines (적응 상태 관측자를 이용한 SI 엔진 속도제어)

  • Kim, Eung-Seok;Lee, Hyo-Seub;Rhee, Hyung-Chan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.693-695
    • /
    • 1999
  • In this paper, the adaptive nonlinear state observer is proposed to estimate the internal states and the nonlinearities of 4-cylinders 4-cycles spark ignition(SI) engines. The observed states and nonlinearities will be used to design the adaptive feedback linearization controller for reducing the fluctuation of idle speed. The simulation results are represented to show the validity of the proposed nonlinear observer-based adaptive controller.

  • PDF

A Study on the Design of an Adaptive Controller with Variable Structure (가변 구조를 갖는 적응 제어기의 설계에 관한 연구)

  • Hong, Yeon-Chan;Choi, Jong-Hun
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.1-5
    • /
    • 1996
  • In the unification method of classical linear control and variable structure control, a problem that the error between the actual plant output and the nominal plant output exists consistently is solved by replacing the nominal plant with an adaptive observer. Since the exponentially convergent adaptive observer is used, the adaptive observer output converges to the actual plant output rapidly. So, the error does not exist after all and as a result the performance degradation of the control system is prevented.

  • PDF

Improved Instantaneous Reactive Power Compensator Applied Sensorless Control of IPMSM with Adaptive Back EMF and Current Model Observer (개선된 순시 무효전력 보상기와 함께 적용된 적응 역기전력과 전류 모델 관측기 적용한 돌극형 영구자석 동기 전동기의 센서리스 제어)

  • Lee, Joonmin;Park, Soon-je;Hong, Ju-Hoon;Kim, Woohee;Kim, Young Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.934-935
    • /
    • 2015
  • This paper presents the sensorless control method that employs the adaptive back-EMF(Electromotive Force) and current model observer of interior permanent magnet synchronous motor(IPMSM). The estimated back EMF considering a saliency is obtained by using the adaptive control method. The estimated EMF is inputted to the current model observer which is connected in series with adaptive back EMF estimator and is used to estimate the position and speed of the rotor. In order to improve the shortcomings of conventional method using the current error components multiplied in the compensation constant, the modified instantaneous reactive power compensator is applied. The validity of the control system presented is verified by the simulation.

  • PDF

An Indirect Adaptive Pole placement Controller Using a Discrete Adaptive Observer with Exponenrial Data weighting (지수 함수적 가중 특성의 적응 관측기를 이용한 간접 극배치 적응 제어기)

  • Kim, Jong-Hwan;Park, Dong-Jo;Jeon, Jeong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.43-46
    • /
    • 1990
  • A general scheme for a discrete adaptive observer having exponetial weighting properties is presented for a single-input single-output linear system. In this scheme, all the past measurement data are weighted esponetially both with the weighting factor and the stable matrix F. This observer is then implemented in the design of an indirect adaptive pole placement contoller. To increase nemerical stability in getting the controller parameter, a recusive algorithm is introduced. It is shown that the overall control scheme is globally stable with the persistent excition

  • PDF

Observer-Based Robust Fault Diagnosis and Reconfigurable Adaptive Control for Systems with Unknown Inputs (미지입력을 포함한 시스템의 관측기 기반 견실고장진단 및 재구성 적응제어)

  • 최재원;이승우;서영수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.928-934
    • /
    • 2002
  • A natural way to cope with fault tolerant control (FTC) problems is to modify the control parameters according to an online identification of the system parameters when a fault occurs. However. due to not only difficulties Inherent to the online multivariable identification in closed-loop systems, such as modeling errors, noise or the lack of excitation signals, but also long time requirement to identify the post-fault system and implemeutation of control problems during the identification process, we propose an alternative approach based on the observer-based fault detection and isolation (FDI) and model reference adaptive control (MRAC). The proposed robust fault diagnosis method is based on a bank of observers. We also propose a model reference adaptive control with changeable reference models according to the occurred faults. Simulation results of a flight control example show the validity and applicability of the proposed algorithms.