• Title/Summary/Keyword: Adaptive M-estimator

Search Result 14, Processing Time 0.033 seconds

Adaptive Robust Regression for Censored Data (중도 절단된 자료에 대한 적은 로버스트 회귀)

  • Kim, Chul-Ki
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.2
    • /
    • pp.112-125
    • /
    • 1999
  • In a robust regression model, it is typically assumed that the errors are normally distributed. However, what if the error distribution is deviated from the normality and the response variables are not completely observable due to censoring? For complete data, Kim and Lai(1998) suggested a new adaptive M-estimator with an asymptotically efficient score function. The adaptive M-estimator is based on using B-splines to estimate the score function and simple cross validation to determine the knots of the B-splines, which are a modified version of Kun( 1992). We herein extend this method to right-censored data and study how well the adaptive M-estimator performs for various error distributions and censoring rates. Some impressive simulation results are shown.

  • PDF

Adaptive L-estimation for regression slope under asymmetric error distributions (비대칭 오차모형하에서의 회귀기울기에 대한 적합된 L-추정법)

  • 한상문
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.1
    • /
    • pp.79-93
    • /
    • 1993
  • We consider adaptive L-estimation of estimating slope parameter in regression model. The proposed estimator is simple extension of trimmed least squares estimator proposed by ruppert and carroll. The efficiency of the proposed estimator is especially well compared with usual least squares estimator, least absolute value estimator, and M-estimators designed for asymmetric distributions under asymmetric error distributions.

  • PDF

An Adaptive M-estimators Robust Estimation Algorithm (적응적 M-estimators 강건 예측 알고리즘)

  • Jang Seok-Woo;Kim Jin-Uk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.21-30
    • /
    • 2005
  • In general, the robust estimation method is well known for a good statistical estimator that is insensitive to small departures from the idealized assumptions for which the estimation is optimized. While there are many existing robust estimation techniques that have been proposed in the literature, two main techniques used in computer vision are M-estimators and least-median of squares (LMS). Among these. we utilized the M-estimators since they are known to provide an optimal estimation of affine motion parameters. The M-estimators have higher statistical efficiency but tolerate much lower percentages of outliers unless properly initialized. To resolve these problems, we proposed an adaptive M-estimators algorithm that effectively separates outliers from non-outliers and estimate affine model parameters, using a continuous sigmoid weight function. The experimental results show the superiority of our method.

  • PDF

Adaptive M-estimation in Regression Model

  • Han, Sang-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.859-871
    • /
    • 2003
  • In this paper we introduce some adaptive M-estimators using selector statistics to estimate the slope of regression model under the symmetric and continuous underlying error distributions. This selector statistics is based on the residuals after the preliminary fit L$_1$ (least absolute estimator) and the idea of Hogg(1983) and Hogg et. al. (1988) who used averages of some order statistics to discriminate underlying symmetric distributions in the location model. If we use L$_1$ as a preliminary fit to get residuals, we find the asymptotic distribution of sample quantiles of residual are slightly different from that of sample quantiles in the location model. If we use the functions of sample quantiles of residuals as selector statistics, we find the suitable quantile points of residual based on maximizing the asymptotic distance index to discriminate distributions under consideration. In Monte Carlo study, this adaptive M-estimation method using selector statistics works pretty good in wide range of underlying error distributions.

On the generalized truncated least squares adaptive algorithm and two-stage design method with application to adaptive control

  • Yamamoto, Yoshihiro;Nikiforuk, Peter-N.;Gupta, Madam-M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.7-12
    • /
    • 1993
  • This paper presents a generalized truncated least, squares adaptive algorithm and a two-stage design method. The proposed algorithm is directly derived from the normal equation of the generalized truncated least squares method (GTLSM). The special case of the GTLSM, the truncated least squares (TLS) adaptive algorithm, has a distinct features which includes the case of minimum steps estimator. This algorithm seemed to be best in the deterministic case. For real applications in the presence of disturbances, the GTLS adaptive algorithm is more effective. The two-stage design method proposed here combines the adaptive control system design with a conventional control design method and each can be treated independently. Using this method, the validity of the presented algorithms are examined by the simulation studies of an indirect adaptive control.

  • PDF

Polygonal finite element modeling of crack propagation via automatic adaptive mesh refinement

  • Shahrezaei, M.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.685-699
    • /
    • 2020
  • Polygonal finite element provides a great flexibility in mesh generation of crack propagation problems where the topology of the domain changes significantly. However, the control of the discretization error in such problems is a main concern. In this paper, a polygonal-FEM is presented in modeling of crack propagation problems via an automatic adaptive mesh refinement procedure. The adaptive mesh refinement is accomplished based on the Zienkiewicz-Zhu error estimator in conjunction with a weighted SPR technique. Adaptive mesh refinement is employed in some steps for reduction of the discretization error and not for tracking the crack. In the steps that no adaptive mesh refinement is required, local modifications are applied on the mesh to prevent poor polygonal element shapes. Finally, several numerical examples are analyzed to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm in crack propagation problems.

Efficient Score Estimation and Adaptive Rank and M-estimators from Left-Truncated and Right-Censored Data

  • Chul-Ki Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.113-123
    • /
    • 1996
  • Data-dependent (adaptive) choice of asymptotically efficient score functions for rank estimators and M-estimators of regression parameters in a linear regression model with left-truncated and right-censored data are developed herein. The locally adaptive smoothing techniques of Muller and Wang (1990) and Uzunogullari and Wang (1992) provide good estimates of the hazard function h and its derivative h' from left-truncated and right-censored data. However, since we need to estimate h'/h for the asymptotically optimal choice of score functions, the naive estimator, which is just a ratio of estimated h' and h, turns out to have a few drawbacks. An altermative method to overcome these shortcomings and also to speed up the algorithms is developed. In particular, we use a subroutine of the PPR (Projection Pursuit Regression) method coded by Friedman and Stuetzle (1981) to find the nonparametric derivative of log(h) for the problem of estimating h'/h.

  • PDF

Non-parametric Adaptive Importance Sampling for Fast Simulation Technique (속산 시뮬레이션을 위한 적응형 비모수 중요 샘플링 기법)

  • 김윤배
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.77-89
    • /
    • 1999
  • Simulating rare events, such as probability of cell loss in ATM networks, machine failure in highly reliable systems, requires huge simulation efforts due to the low chance of occurrence. Importance Sampling (IS) has been applied to accelerate the occurrence of rare events. However, it has a drawback of effective biasing scheme to make the estimator of IS unbiased. Adaptive Importance Sampling (AIS) employs an estimated sampling distribution of IS to the system of interest during the course of simulation. We propose Nonparametric Adaptive Importance Sampling (NAIS) technique which is nonparametrical version of AIS. We test NAIS to estimate a probability of rare event in M/M/1 queueing model. Comparing with classical Monte Carlo simulation, the computational efficiency and variance reductions gained via NAIS are substantial. A possible extension of NAIS regarding with random number generation is also discussed.

  • PDF

The Experimental Verification of Adaptive Equalizers with Phase Estimator in the East Sea (동해 연근해에서 위상 추정기를 갖는 적응형 등화기의 실험적 성능 검증)

  • Kim, Hyeon-Su;Choi, Dong-Hyun;Seo, Jong-Pil;Chung, Jae-Hak;Kim, Seong-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.229-236
    • /
    • 2010
  • Phase coherent modulation techniques in underwater acoustic channel can improve bandwidth efficiency and data reliability, but they are made difficult by time-varying intersymbol interference. This paper proposes an adaptive equalizer combined with phase estimator which compensates distortions caused by time-varying multipath and phase variation. The experiment in the East sea demonstrates phase coherent signals are distorted by time-varying multipath propagation and the proposed scheme equalizes them. Bit error rate of BPSK and QPSK are 0.0078 and 0.0376 at 300 meter horizontal distance and 0.0146 and 0.0293 at 1000 meter respectively.

A New Fast Simulation Technique for Rare Event Simulation

  • Kim, Yun-Bae;Roh, Deok-Seon;Lee, Myeong-Yong
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.70-79
    • /
    • 1999
  • Importance Sampling (IS) has been applied to accelerate the occurrence of rare events. However, it has a drawback of effective biasing scheme to make the estimator from IS unbiased. Adaptive Importance Sampling (AIS) employs an estimated sampling distribution of IS to the systems of interest during the course of simulation. We propose Nonparametric Adaptive Importance Sampling (NAIS) technique which is nonparametrically modified version of AIS and test it to estimate a probability of rare event in M/M/1 queueing model. Comparing with classical Monte Carlo simulation, the computational efficiency and variance reductions gained via NAIS are substantial. A possible extension of NAIS regarding with random number generation is also discussed.

  • PDF