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Adaptive Robust Regression for Censored Data

Chul-Ki Kim
Dept. of Statistics, Ewha Womans University

Abstract

In a robust regression model, it is typically assumed that the errors are
normally distributed. However, what if the error distribution is deviated from the
normality and the response variables are not completely observable due to
censoring? For complete data, Kim and Lai(1998) suggested a new adaptive
M-estimator with an asymptotically efficient score function. The adaptive
M-estimator is based on using B-splines to estimate the score function and a
simple cross validation to determine the knots of the B-splines, which are a
modified version of Kun(1992). We herein extend this method to right-censored
data and study how well the adaptive M-estimator performs for various error
distributions and censoring rates. Some impressive simulation results are shown.

Key words: Adaptive M-estimator; Asymptotically efficient score function;
Right-censored data.
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1. Introduction

Consider the linear regression model

yi=a+B8Tx;+e; (j=1,2,,m), (1.1

where the ¢; are iid. random variables and the x; are independent pX1 random
vectors independent of {e}. Huber's M-estimators ay By of a, 8 based on

(%;1,¥),*,(x,,¥,) are defined as a solution vector to the minimization problem .
Z;lp(y,-— a—b'x)= ( fp(y— a)dF" ,.,b(y)) = min!, (1.2)

where F*,, is the empirical distribution constructed from y{b)=y,—bx;,

j=1,--,n. When p is differentiable, the M-estimators ’&H_ 3;; can also be

defined as a solution of the system of estimating equations
)le’(yj—’ a—bTx)=0, glx,-p’(yj— a—bTx)=0. (1.3)

A well-known robust choice of o is Huber's score function
o (w=u if lul<c and P (w)==xc if |uldc, (1.4)

where ¢ represents some measure of dispersion of F. Using (14) in (1.2) is
tantamount to applying the method of least-squares to “metrically Winsorized
residuals” (cf. Huber(1981, p.180)).

In many applications, the responses y; in (1.1) are not completely observable

due to constraints on the experimental design. Thus, instead of (x;,y;), one

observes

(x;,y,6) j=1,+,n, (15)
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where y;=,/\¢;, 8;= Ky;<c;) and we use A\ to denote minimum and maximum
respectively, and the ¢, represent censoring variables by —oo{ ¢;< 0. Unless
otherwise stated, it will be assumed that (c;,x;) are independent of the sequence

{e;}. The “censored regression model” is widely studied in quality engineering

and economics. The system of estimating the equations (1.3) can be easily
extended to censored data. Kim(1997) suggested an algorithm to compute the
Huber's M-estimator for censored data. A modification of estimating equation

(1.3) with o' (%)= u results in the Buckley and James’ estimator(cf. Buckley and

James(1979)).

However, for non-normal error distributions, Huber's or B-J's (abbreviation of
Buckley and James’) estimator is not a pertinent estimator. Therefore, it behooves
us to find a data-adaptive M-estimator. In Section 2, we first study a simple
form of the estimate of the score function for the underlying density (cf. Kun
(1992)) and learn two set cross-validation which is theoretically justified by Lai
and Ying(1991b, 1992). In Section 3, some numerical examples show how well our
new adaptive M-estimators perform for censored data with non-normal error
distributions.

2. Adaptive Score Function

We use the linear B-splines to estimate the score function o' = ¢=(log /)* and
derive a simple form of the estimate 5\,, of ¢, where &, the number of knots,

is a smoothing parameter of which the empirical selection rule is based on two
set cross-validation. This rule is a modified version of Kun(1992), which is
theoretically supported by Lai and Ying(1991b, 1992).

2.1 Notation

On an interval (b&,,b,), for any integer k&, let the knots {&}, be b= &yp<
Ex < CEn="0, and let the linear B-spline basis be Byy(x), i=1,,k. Also
let Dyy(x),i=1,--,k, be their piecewise derivatives. ‘

Denote B,,(x) = (B,,(l)(x), °'-,B,,(,,)(x))', D,.(x) = (Dk(l) (x), "‘,Dk(k)(X))[, and A,,(x)
= B, - Bi(x). Define
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B(F)=( [ Buy(®) dF (), [ Bun(x) dF(2)) @D

Similarly define Dy(F), AF), B{F,), DiF,) and AF,).

2.2 Spline Interpolation and Knot Placement
The interpolation of ¢(x) is defined as ai(F)Bix), where a,(F) minimizes

b,
fb (atBy(x) — ¢(x))2fdx for all a,< R*. By partial integration,

5,
J, (@iBux) — 8()) s

b, b, b,
=a£(fbl B,,Bi(x)fdx)ak—Zaf,fbl Bypsan+ |, ¢ fax
= akA(F)ay+ 28D F) + 1,($). (2.2)

Minimizing (2.2) is equivalent to minimizing a}A{F )a;+ 2a:.D(F). Therefore,
the ay(F) exists and a(F)=—A;(F)D(F). Then, ¢ 5,5, is interpolated as
du(x) = a(F)Byx). Naturally, we take a,= a,(F,)=—A,; '(F,)Di{F,) as the
esti-mate of a(F), and we estimate ¢, , by $u(x)= a'y(F,)Bx). The

partial integration in (2.2) was first used by Cox(1985) to interpolate ¢ by
smoothing splines.

For a given integer k, let {e(},i=1,--,m(n), be the order statistics of the
residuals {e;} in (b, b,). Then, the knots are &xy=e (- mmir+n), =1, &,

and this is the equally spaced quantiles method approached by Faraway(1992).

2.3 Empirical Selection of &

In order to choose the number of knots, we would like to pick £ to minimize

be
J, (@(F)'Bix) — $(x))* fa. 23)
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This cannot be done since (2.3) depends on the unknown f. This is typical
situation in which cross-validation can be applied. Minimizing (2.3) is equivalent
to minimizing

L(k.Fn.F)= alk(Fn)Ak(F)ak(Fn)_‘—z atk(Fn)Dk(F)- (24)
Following procedure was suggested by Kun(1992):

1. Split the residuals into e, **,€,, €441, € n,+n,» Where n=min{3 n /2, n/2)
and nmy=n—n|
2. Minimize L(k,F,, F) which is estimated by

L(k, Fnl, F”z) = a'k(Fnl)Ak(Fnz)a,,(F,,l) +2 a'k(Fm)Dk(F,,,),

where F, and F,, are the empirical distribution functions of {ey,*,eyn,}
and {€ ,,4+1,""", € n + ), respectively.
3. Select the first local minimizer fcw as a cross-validatory estimate of &

satisfying
L(]-’anFnz)Z".ZL( Ecu’Fn,-Fnz)<L( %CU+1'F”1!F7Iz)'
4. Split the residuals again, this time into ey, ", €, € p+1,""*1€ ny+ 4, and go to
step 2 and 3, where another first local minimizer Ité'c,, is picked.
—1 nb, o
5. Define ST(k, F,)=(1/k) gfb (a!(F,)Bfx)— ai(F,)B{x))*dF, and %, is
the first local minimizer of ST(k, F,) over keI(n), where I(n)= {k % o<
k< 7?0,,} if #.,< k.. Choose k, within I(n) satisfying
ST(Ek . F)=2ST( k,, F)(ST( k,+1,F,).

If there is no such %, within I(#), choose %,= ¥ -
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However, the step 5 called a stationary correction procedure is not theoretically
proved rule but just empirical selection one. Thus, instead of the stationary
correction procedure, we apply another cross-validatory method proposed by Lai
and Ying(1991b, 1992), which starts from dividing the sample into two disjoint
subsets. One might randomly split it into two sets of data. From the first

subsample, define the residuals e;= y;— bx;—a (i<n/2) and let n,=[#/2], ie.
the largest integer <n/2, where (a, b) is the B-]'s estimators of ( a, 8) for the

first subsample. And we do the step 2 and 3 to get the score function 3k(x)=

a'(F,)Byx) for the first subsample from the second one of ny=n—n,
observations (x,, ¥,.6,), ni{r<n. Likewise, we define the residuals from the
second subsample and do the same procedure after we switch F, and F,,. Also’

we obtain the score function @, (x)= a'y (F,)B,(x) for the second subsample

from the first one.

Once we evaluate the score function at each data point, we plug -all the values
in the algorithm for computing the M-estimator for censored data proposed by
Kim(1997) and get an adaptive M-estimator.

3. Adaptive M-estimator

3.1 A Gauss-Newton-Type Algorithm

In Section 2, we studied the data—adaptive score function a(x). Now we fit the
linear regression model with @(x). Throughout the sequel, we shall use the
following notation for the right-censored data (15). Let v:(8)=y;,—b"x; and

define
Nb,w= I 20, 8(b,0)=1(5i(b)=u,8=1),

Fuln=1- T (1-a(, 5B INCB, 5B, 3D

i 71BSu, 8=

The notation F(ulv—) will be used to denote (3.1) in which “v< y;(&)" is
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replaced by “ v< y;(8)". The function Fy(u|— ) is the product-limit estimate
of the common distribution function F(2) of the ¢&;+e in (L.1). Put ¢=7p" in

(1.3). To extend (1.3) to right-censored data (1.5), Lai and Ying(1994) applied
“missing information principle” which leads to replacing (1.3) by the estimating
equations

261 (a,0)=0, L xbl(ab=0, (32)
where
#7(a, D=8 5:(B-a+(1=08) [ _ #(u=a)dFi(ul 5:(8) (3

(cf. (2.24) and (2.26) of Lai and Ying(1994)).
Ordering the y,(B) as ;nl(}?)z---z 37[,,](3) and let

yin= (B, _ (3.4)

where r is the risk set size trimmed away. for smoothness of the product-limit
estimate at its tail (cf. Lai and Ying(1991a)). Let X denote the #nX (p+1) matrix

whose ith row is I( y; (B <y (1, %;7). We now describe an iterative
algorithm for computing the M-estimator for censored data (cf. Kim(1997)).

Let 6= (a,B8")T and let 8P = (a®, B(")T)T denote the result after the kth

. . .  ege ye - ~ T.
iteration to compute the M-estimator of @, and we initialize 60 = (2, B)T by
the B-J's estimators for the whole data. The algorithm consists of the following
procedure.

1. For k=0, set 89 =(g%, BT)T and compute y(,.
2. Compute 5/:(/9(")), i=1,-, n

3. Evaluate pﬂm(ulv) or Fﬁw(ulv—) by (3.1) at uE{)Ti(BU')):&:l,z'Sn}

and vE{ﬁ(ﬁ(")):iSn}, u=v.
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4. Compute the nx] vector @®®, whose ith component is ¢* (¥, g™¥) x

Iy ( B <y(,).
5. Solve the linear equation X Txz=XT0® to find z2=2".
6. Put §**V=g® 4 ®

7. Increase counter from k to k+1 and go to step 2.

We will see in the next section that the data-adaptive M-estimator works well
compared with other M-—estimators.

3.2 Numerical Examples

We consider a simple linear regression model y;=a+ fx;+¢€;, where the ¢;

are i.id. random variables and we assume that the true values of @ and B are
equal to 0 and 1, respectively. For this simulation model, we compute B-J's,
Huber’'s and the adaptive M-estimators, and then compare their mean square
errors (MSE).

The simulation results show that the adaptive M-estimator performs well
specially when the distribution of errors violates the normality assumption.

EXAMPLE 1. Generate the x; from U[-22] and the ¢; from N(0,1). And the x;
are independent of the ;. The ¢; are subject to nearly 20% right censoring by
the censoring variable c;, where the ¢; are iid. Ul0,2]. 100 censored data sets

are gene}ated from this model with sample size »n=200.
<Figure 1> shows the data-adaptive score function is quite close to the true

one ¢=f/f Table 1 compares the mean square errors (MSEs) of the three
estimators, where we mainly focus on the P’s MSE because the location

estimator @ in a censored regression model is meaningful only under some
regularity condition of the error distribution (cf. Lai and Ying(1994)). As known,
B-J's estimator is a good choice for a normal error distribution and we can check
the fact in <Table 1>.
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e~Normal(0,1) about 20%
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" < Figure 1 > The broken line represents the true score function ¢=f/f=—x

and the points stand for the estimated. The vertical lines show the
density of uncensored residuals.

EXAMPLE 2. Consider the e; which are iid. Exp(1), ie. seriously deviated from
normality, and the x; uniformly distributed on [-2, 2] and independent of the ¢;.

Also the ¢; are subject to right censoring by the c¢; distributed as Exp(0.2) and

the censoring rate is about 20% for all data sets. Like Example 1, 100 censored
data sets are generated from this model with sample size »=200.

In <Figure 2>, we see the data-adaptive method pertinently estimate the true
score function even under non-normality of the error distribution.

Although the error distribution is deviated from normality, the MSE of the
adaptive M-estimator is smaller than those of others-as shown in <Table 1>. It
implies the adaptive M-estimator is more appropriate than others under the
non-normal assumption. Notice that Huber’'s M-estimator which is resistant to
outliers, is still as valid an estimator as the adaptive M-estimator, because the
generated data have some outliers as shown in <Figure 2>.
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e~Exponential(1) about 20%
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< Figure 2 > The broken line stands for ¢= f/f, where f=e *, and the points
represent the estimated score functions. The vertical lines show the
density of uncensored residuals.

< Table 1 > Comparison of the three M — estimators: BJ(Buékley and James'

Estimator), H(Huber's M-Estimator) and AME(Adaptive M-Estimator)

o B

4 Mean MSE Mean MSE

N(O, 1) BJ -0.00920 | 0.01305 1.00092 0.00245
H -0.06630 | 0.00803 100040 | 0.00260

AME 0.0879% 0.17485 0.99851 0.00299

Exp(1) BJ -0.05167 0.00561 0.99766 0.00129
H -0.18811 0.03839 099328 0.00075

AME 0.04351 0.02984 1.00132 0.00067

LN, 1) BJ -039414 | 019757 0.97926 0.00216
H -0.18111 0.03839 099328 | 0.00124

AME 0.05685 0.17100 0.98088 0.00124
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EXAMPLE 3. Consider the &; which are distributed as LN(0, 1) (lognormal)
deviated from normality. And we generate the x; from Ul-22] independent of the
€;. The ¢g; are subject to about 22% right censoring by the c¢; which are iid.

LN(1,2). We sample 100 censored data sets from this model with size »n=200.
<Figure 3> shows that the score function obtained by the adaptive method is
approximate to ¢= f /f for the non-normal density function f.

e~LogNormal(0,1) about 20%

© 8
el
1 §
'
’
] i
d
< - ‘
£
a 3
o "{
‘.
[ B
\.
o M
® DO ¢ e ¢ oo P
b [
L]
ol . .
Lo f B LR RO I I {LRT I N I [l |
T T —
0 2 4 6

X

< Figure 3 > The broken line represents ¢=f"/f, and the points are the

estimated score functions. The vertical lines show the density of
uncensored residuals.

If the errors are not normally distributed unlike Example 1, B-}'s estimator is
not a good choice compared with others. We see that our adaptive M-estimator or
Huber’s is a better choice for the non-normal error distribution as shown in

<Table 15. The MSE of the adaptive M-estimator B is smaller than that of

B-J's as in Example 2. The competitively small MSE of Huber's M-estimator
probably results from the robustness to some outliers and the reason is the same
as that in Example 2.
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EXAMPLE 4. Generate the ¢; from four different lognormal distributions LN(0,

6) with ¢=025050.75 and 1.0. Also the censoring variable c¢; are generated
from LN(2805), LN(305), LN(3,1) and LN(3.2,1.25) with nearly 20% censoring
rate, respectively.

<Figure 4> shows the density functions of the four different distributions. In
case of ¢=025, it is quite close to a normal distribution, but the larger o is, the
more severely deviated from normality the distribution is. Therefore, we expect
that the MSE of the adaptive M-estimator is constantly smaller than others, even
though ¢ varies from 0.25 to 1.0. According to <Table 2>, the adaptive M-
estimator be-haves relatively better than B-]J's or Huber's M-estimator.

e~LogNormal(2,sigma)

&4
© — sigma=0.25
....... sigma=0.5
"""" sigma=0.75
0 —=—- sigma=1
ety
2 =
o
[Tel
Q_ -
o
TEN———
sl - < T~ e AT TS
i _l T T T T
0 5 10 15 20

< Figure 4 > LN(2,0). where 6=0.25, 0.5, 0.75, and 1.0
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< Table 2 > Comparison of the three M —estimators for lognormal error distribution:
BJ(Buckley and James’ Estimator), H(Huber's M-Estimator} and AME

a B

LN@, 0) ¢ Mean MSE Mean MSE
 BJ -0.05241 | 0.01449 104937 | 001529

025 H 018941 | 0.04667 104604 | 001529
AME 039142 | 0.25456 1.03311 0.01270

BJ 0.36546° | 0.38391 099979 | 0.07853

05 H -0.41843 | 038568 111457 | 007378
AME 058438 | 063096 100784 | 0.08930

Bj -020137 | 020486 | 091587 | 0.14761

0.75 H -199602 | 449991 0.89200 | 0.17056
AME | -007611 | 0.17601 09449 | 0.06487

BJ -168275 | 407685 | 094329 | 037001

1.0 H 521241 | 406167 114572 | 0.23833
AME | -15217 | 350419 | 098490 | 0.21207

4. Conclusion

In a linear regression model, there may exist censored data with non—normal
errors which are often used in quality engineering and economics. Our simulation
studies have shown that the adaptive M-estimator is better than other
M-estimators such as Huber's or B-J's when the errors of a linear regression
model are not normal. Moreover, even for censored data, this adaptive method is
asymptotically optimal in the sense that the limiting distribution of the adaptive
M-estimator is normal with a minimal variance (cf. Kim and Lai(1998)). In this
study, we did the simulations only for the simple linear regression model, but the
whole procedure can be easily extended to multiple linear regression models and
we expect to get the similar results. '
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