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Abstract

Data-dependent (adaptive) choice of asymptotically efficient score functions for rank
estimators and M-estimators of regression parameters in a linear regression model
with left-truncated and right-censored data are developed herein. The locally adaptive
smoothing techniques of Miller and Wang (1990) and Uzunogullari and Wang (1992)
provide good estimates of the hazard function h and its derivative A" from
left-truncated and right-censored data. However, since we need to estimate h'/h for
the asymptotically optimal choice of score functions, the naive estimator, which is just
a ratio of estimated A’ and h, turns out to have a few drawbacks. An alternative
method to overcome these shortcomings and also to speed up the algorithms is
developed. In particular, we use a subroutine of the PPR (Projection Pursuit
Regression) method coded by Friedman and Stuetzle (1981) to find the nonparametric
derivative of log(h) for the problem of estimating h'/h.

1. Introduction

Consider the linear regression model
yvi=B8"Tx;+e; (i=1,2,-), (1.1)

where the ei are iid. random variables representing unobservable disturbances and having a
common continuously differentiable distribution function F with density f, 8 is a dX1 wvector
of unknown parameters and the xi are either nonrandom or independent dX1 random vectors
independent of { e n}. Suppose that the responses yi in (1.1) are not

completely observable due to left truncation and right censoring by random variables ¢
and ¢ such that ®©>f>-00 and -<g<. Let y;=yiAc; and &= I (<), where we use

A and V to denote minimum and maximum, respectively. In addition to right censor-
ship of the responses yi by ¢, we shall also assume left truncation in the sense
that ( yT-, 8ix) can be observed only when y\,-Zt.-. The data, therefore, consist of n
observations ( 7, £2, 82, x2) with Y2212 i=1n.
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It is usually assumed that (ti,ci,xi) are independent of the sequence { en}. The special case
ti=-o0 corresponds to the “censored regression model” which is of basic importance in
statistical modelling and analysis of failure time data (cf. Kalbfleisch and Prentice, 1980;
Lawless, 1982). The special case ci=% corresponds to the “truncated regression model” in
econometrics (cf. Tobin, 1958; Goldberger, 1981, Amemiya, 1985) and in astronomy (cf. Segal,
1975; Nicoll and Segal, 1980), which assumes the presence of truncation variables ri so that
(xi,yi) can be observed only when yi< ri (or equivalently, when -y;>-r =t; ).

Instead of assuming the (t,c;,xi) to be independent so that the sample {( 3;,3 £,cl,x)1<i<
n} can be regarded as having been generated by a larger, randomly stopped sample of

m
independent random vectors (yiticixi), 1=<i<m(n)=infim: le(tisyi/\c;')=n}, an alternative
=

setting proposed by Turnbull (1976) is to assume that ( £,c},x? ) are independent random
vectors that are independent of { €.} and such that ¢;=¢ and
rp=0, ;= inf{Dr; 19,28}, ¥ =y, A, (1.2)
(t;i,ciox) =(8],c5,x7) for r;,{i<7;.
In this formulation, ( 37, £, c? x) are independent random vectors such that the conditional
distribution of 3;,5 given (£, ci,x?) is
P(yi<ylf, c3, 28} = (F(y—B"Tx) —F(5i—ATx)) (L - F(£—-"xD), y=2£]  (L3)
Suppose that ( £, ¢i,x7) are iid. random vectors whose distributions do not depend on A
and that conditional distribution of 3¢ given (#,c%x?) is determined by (1.3). Under the
assumption that the density function f of F is known, the maximum likelihood estimator of A

is asymptotically normal with mean O and covariance # 'V}, where Vf_l is the Fisher

information matrix. Without assuming f to be known, it is shown in Lai and Ying (1992b)
that adaptive estimators can nevertheless be constructed so that they are asymptotically

normal with mean 0 and covariance #= _lVf when x; has mean 0 and is independent of
(t;—BTx; ci— BTx;). In general, these estimators may have larger asymptotic covariance
matrices (in the sense of nonnegative definite differences) than # —IV/‘, but can still be shown
to attain the asymptotically minimal covariance matrix for the asymptotic distributions of

regular estimators. Such optimality results follow from the generalization of the Hajek
convolution theorem and asymptotic minimax bounds to semiparametric models by Begun,

Hall, Huang and Wellner (1983), since the ( £/, ¢{,x;) are assumed to be ii.d. random vectors.
Lai and Ying (1992b) have further removed the restrictive assumption that the ( £, ¢7, x{) be
identically distributed, which excludes the important case of nonrandom ,¢; and x5,
and have also developed asymptotic lower bounds for minimax risks in the general
setting where (#,c?,x!) are only assumed to be independent. Moreover, they also
consider the setting of independent (#,c,x;) instead of independent (#,c{,x{) and
develop asymptotic lower bounds in this alternative setting.
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Lai and Ying (1991b,1992b,1994) have shown how to construct estimators that are
asymptotically efficient in either settting, in the sense that the covariance matrix of the
asymptotically normal distribution coincides with that given by the asymptotic lower bound.
The basic idea involves estimating the score function A'/h for rank estimators and the score
function h’'/h-h for M-estimators with Ltr.c. data, where h and A’ are the hazard function and
its derivative, Arespectively. We shall make use of an alternative method that uses extensions
of locally adaptive hazard smoothing to Ltr.c. data (cf. Miiller and Wang, 1990; Uzunogullari
and Wang, 1992) and the idea of estimating h'/h from log(h), as mentioned in Section 2.
Section 2 shows how to estimate the hazard function A, its derivative A’ and their ratio h'/A
in practice. In Section 3 we apply these techniques in finding asymptotically efficient score
functions for rank estimators and M-estimators in a linear regression model with Ltr.c. data.

2. Locally Adaptive Hazard Smoothing with L. T R.C. Data

Miiller and Wang (1990) considered the problem of local bandwidth choice for nonparametric
kernel estimation of a hazard function and its derivative under censoring. When estimating the
hazard function or its derivative, they proposed that bandwidths should be chosen locally by
adapting to the local Mean-Squared Error (MSE). They also showed that such locally
adaptive bandwidth choice is indeed feasible and proposed asymptotically efficient methods to
achieve it. To estimate the hazard function or its derivative, the convolution of the Nelson
(1972) estimator with a kernel function was considered. The convolution can be carried out
numerically by using the Fast Fourier Transformation (FFT). Later Uzunogullari and Wang
(1992) studied the estimation of the hazard rate function for left-truncated and right-censored
data based on kernel-smoothing methods and presented its asymptotic properties including
consistency, asymptotic normality and asymptotic formulas for the MSE to faciliate locally
adaptive bandwidth choice.

Let Y.,Y2+ be independent random variables having a common distribution function
F. Let (T;,C) be iid. random vectors that are independent of the Y: Let ?7=Yi/\ G and
8=1I(y<c). In the presence of the right-censoring and left-truncation variables C; and
T, the Y: are not completely observable; one only observes (¥;,6) when P27,
Thus, the data consist of n observations ( Y7, 8%, T 1<icn With Y7= T? for each i
obtained from a larger sample (Y, T}, C)) \<icmn. In the context of survival analysis,
the Y: are survival times or functions of survival times (such as their logarithms). Our
aim is to estimate h(x)=H'(x)=x)/(1-F(x)), the hazard function (where H is a
cumulative hazard function of the Y; and fF is assumed to exist). Let

Li()=P(Ti<x<Y7,80=1|Y>T? be the conditional subsurvival function for the
uncensored observations and let
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p— n
Li,(®=(n+1) 7 X (Ti<x< Y], 87=1) 2.1)
=
be the corresponding modified empirical subsurvival function. Similarly, denote the modified
empirical survival function of L (%)= P(T!<x<Y?| Y?>T?) by

L,(0)=(n+1) glz(ﬁst 7). 2.2)
Using the fact that
dL,(x) _
I(» h(D, 2.3)

where for any distribution function G, G=1-G under Ltr.c., the analog of the Nelson (1972)
estimator of H(x) is

Hy()= [ 11=L, ()] L 1(5). @4

To estimate % “’(x), we consider the following kernel estimate, which is a convolution of the

Nelson estimator H, with an appropriate kernel function K,:

n T
A= b [KAEF a0 = e R 2506, @5)

Here »° (p are the order statistics of ?’7; if 3° (o 1is uncensored, 0% =1, otherwise 0;

and 7, is the size of the risk set at y° (), Le. n(y= Z KE< 5% (y< %%). Further, b=b(n)
is a sequence of bandwidths for which we require

b—0, nbz"ﬂ-»oo, —n—b—f — 00, gs n — 0o,
(logn)
and K, is a kemnel function of bounded variation and is of order (v k) with support [-1,1],
i.e. satisfying

(=D j=v
K, e M.,k—[fe L[ -1,1D): ff(x)x’dx 0<j<k, j#v
*0 =k

To estimate the bias and the variance (as functions of b) for the case v =0, one can use
the following analogues of the Miiller and Wang (1990) estimates:

Bz, b= [ Ax—by) Ko(9) dy— () 26)
for the bias, and

T | A

iz 0= 5 [ Kol B ay @7

for the variance. Note that B and v can be evaluated numerically by discrete approxi—

mations to these convolution integrals. We applied the FFT for computation in the simulation

study. Consequently, the proposed local bandwidth estimate for the case v =0 can be obtained
as a minimizer of
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MSE(x, )= %x, )+ B (x,b) 238)
with respect to b, which we denote by 50, The algorithmic implementation of the
proposed method requires a number of choices to be made. These concern 5, the pilot
bandwidth to compute # via (25) for (26) and (27), and b0, 5@ the bounds between
which a minimizer is sought. Once b is initialized by any available option, it is
recommended to choose 6P =0.55,6%=2.08 (cf Miller and Wang, 1990;
Uzunogullari and Wang, 1992).

Similarly, one can estimate h’, the derivative of a hazard function, as discussed in
Miilller and Wang (1990) and Uzunogullari and Wang (1992). Figure 1 illustrates the
preceding algorithm. As we see in the plots, the estimates of % (%) for v=0, 1 have
a somewhat poor performance at small risk set size near the edges of the interval.

Hazard Derivative of Hazard
2 g7
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Y Y
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Figure 1. Estimates of hazard function A, its derivative A’ and their ratio h'/h are represented
by the solid lines; the actual ones, by the dotted lines. The uncensored data points
over the interval are shown by the vertical strokes.
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These numerical results were obtained from the following simulation setting with sample size
200:

Y; 'ZE‘:N(O, 1) and independently T did = MO0, 1),

Ci= T+ (exp(— TYONVO.5)U; with U; 22 Unif[0,5],

42% are left truncated; 22% of these are right censored,

212
and a kernel function Ky(y)= { (15/16) (1 —5°) :ﬁ iiﬁ)l)ll was used.

The estimate of the ratio A'/h in the third panel of the figure will be used for the
adaptive estimation problem of the slope A in a linear regression model with ltr.c. data.
Alternatively, we can compute the nonparametric derivative of log(h), which is h’/h, by using
the subroutine der of PPR (Friedman and Stuetzle, 1981).

3. Efficient Score Functions for Rank and M-estimators

Consider the problem of estimating the slope A in the regression model (1.1) with a single
parameter. Recalling the notation described in Section 1, a starting point of the development in
Lai and Ying (1991b) is the following general class of rank statistics formed from the

residuals e,(b)= y'—&x!. Let e (b <-<e (b denote all the ordered uncensored
residuals. For i=1,--- k, let
JG, D) ={<n: —bxi<e (D) <y —bxl}, n{b)=#]Gb), 3.1
x(7, b) = ( 2 % nLD),
where the notation #A denotes the number of elements of set A. Let ¢ be a twice
continously differentiable function on (0,1) such that sup g il¢” (£)I<©. Let p be a

nondecreasing and twice continuously differentiable function on the real line such that
p(»)=0 for y<0 and p(»)=1 for y=1. (3.2)

Take 0<A<1/18 and define p,(2)=p(n*(z—cn ) for 0<z<1. Define the product-limit
estimator £ 2.6 and the rank statistic associated with ¢ by

1— F, ()= I1 {1=pu(n " nd6))/nb)} 3.3)

e (")(b)( u, 6”(.) =]
and

Su(b)= ,2:1‘”( Fos(e o (B))paln " nd0)) (x o~ 2(, ) (34)

Lai and Ying (1991b) defined in the present setting, in which the responses yi are subject to
left truncation and right censoring, a rank estimator B,, of B as a zero-crossing of Sa(b).

Thus Sa(b) is a step function of b, but there is no guarantee that it is monotonic. Therefore
there might be multiple solutions of Sa(5)=0.

By Theorem 2 in Lai and Ying (1991b), the rank estimator 3,,, defined as a zero-—crossing
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of the linear rank statistic (3.4), is asymptotically normal N(8,»/ (A%K’n)) as n — oo
Letting hA=f/(1-F) denote the hazard function of F, we express A as

A= [ W FELH (S HIN Gy (9) ~GHS Gl 1dF(s),
where for r=0,1,2 and with F(x) < 1
lim ot ' 30 B(PLt— i< s<ci— Bribxid) = GA9),
lim ppcome " ‘zz:lP{t,--ﬁx,-s ci—pBxiis} = G(s),
rp=inf{s:Gy(s)>0}, z=inf{s) ry: (1—F(8))Gy(s) =0},
and  E(s)=(F(s) = F(z0))/(1 - F(z)) = P{e,<sle;= )

Since  1/K= [ (Gy+ OVdF and v=K [ *( F(ON G(9) ~GH(9) /Gy(IdF(s), it then
follows from the Schwarz inequality that

(AK) 202 ([ _(Go+ QRN [ (WG~ GHGaF) 35)
and that equality of (3.5) holds also in the case ;
GCE())=n(s)/n(s). (36)

Since h is usually unknown in practice, Lai and Ying (1991b,1992b) studied how to use
the observed data (J;?  85,67,x7), i=1,-n, to estimate the asymptotically optimal score
function (3.6) for the linear rank statistic (34) from which we obtain an asymptotically
normal rank estimator B,, that achieves the lower bound in (3.5).

The basic idea of Lai and Ying (1991b,1992b) is to divide the sample into two disjoint
subsets. One might randomly split it into two sets of data. From the first subsample,
define the residuals e(b)= y'—bx? (i<n/2) and order the uncensored ones among
them as e)(b)<--<e)(b). Let m=[n/2], ie. the largest integer<rn/2, and define

JGib), nid), x(i,b) as in (3.1) but with m replacing n (ie. on the basis only of the
first sample). Analogous to (3.4), define

b _
Sni(b)= §1¢ n2(e @ (D)pun n b)) x%— x(i, b, (3.7

where ¢,,(s) is an estimate of A'(s)/h(s) from the second subsample of m=n-n; obser-
vations (J;E, £y, 07, %), m<r<n. Likewise from the second subsample, define the
residuals ef(B)= »° m+i—0x% +; (i<m;) and order the uncensored ones among them
as eTu(b)S'“Se;'[(kz](b). As in (31), let ]*(i,b)={n1<rSn:t‘;—bx‘;se"[‘ﬂs ¥, —bx’}
nF(b)=#75(i,b), % (i,b)=( X, x2)/n}(b). Define

rej (i, b)

ko : —_
SnZ(b)= §1¢ n,l(eTt] (b))ﬁn(n _ln:'k(b))[xon,+[l']_ x* (Z, b)]. (3.8)

where ¢, ,(s) is an estimate of A’(s)/h(s) based on the first subsample. Combining the
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two subsample statistics (3.7) and (3.8) gives the linear rank statistic
Sx(B)=S,1(b)+S,20b) (3.9)
A crucial part of this adaptive method in applications is how to construct the
estimator ¢,; of h'/h based on the jth subsample (=1,2). As discussed in the previous
section, the locally adaptive hazard smoothing technique is used for the estimation of the
score function. Replacing Y°; and T; in the section by ypa,-—bxf- and #—bx? of
the first subsample, we can estimate the hazard function A and its derivative A’ by the locally
adaptive choice of the bandwidth on an interval for which the lower and upper endpoints are
the minimum and maximum of the residuals of the second subsample, and
vice versa. Choosing k to be large relative to the length of interval, the estimator ¢ n;
is evaluated at consecutive points that are at a distance of 2 ¥ apart; and we
interpolate the associated value for each uncensored residual that lies between two such
grid points.

(a) Adaptive Rank Estimator (b) Adaptive Rank Estimator

Sn(b)
0

Sn(b)
0

06 08 1.0 1.2 1.4

Figure 2. Plots of the adaptive rank statistics Sp(b) versus b; the solid line represents the
adaptive rank statistics Sa(b) with the naive estimate (a) and the nonparametric
estimate (b) of score function h'/h; the dotted line, the rank statistics Sa(b) with
the optimal score function of the known hazard function (see (3.4)). The true value
of the slope A indicated by “X” is 1 and the zero-crossings are found near 1.

Figure 2 gives plots of the adaptive rank statistics Sp(b) over an interval of b, based on the
data obtained from the following simulation experiment:

vi=Rx;+e; (i=1,--,100)
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where

e, 22 N0,1), x; 22 Uniform{0,1], # 42 N0, D),
c;=t;+ (exp(—£)V0.5)u; with u; did Uniform[0, 5],

13% are left truncated; 24% of these are right censored.

A few problems in numerical computing are considered at this point: first, there is no closed
form for S.(b); second, there might be multiple zeros of Sn(b). A preliminary estimator of A
is therefore used as a guide to find a proper interval of the slope b by using some other
methods such as the nonparametric regression techniques introduced in Kim and Lai (1995)
and the weighted M-estimators in regression analysis by Gross and Lai (19%4a).

However, we observe a few drawbacks of the naive estimate of score function hA’'/h, which
is the estimated A’ to estimated A ratio: since the score function is sensitive to the estimated
values of A as a denominator, we can see a jittery behavior of the adaptive rank statistic
Sn(b) over an interval of b, as shown in Figure 2 (a); furthermore, the estimation problem of
h and A’ involves FFT at every value of residuals and bandwidths, which slows down the
whole computing procedure. Instead of using the naive estimate, we can run the subroutine
der of PPR to nonparametrically differentiate log(h) and thus to obtain an adaptive estimate of
score function h’/h. This resultant estimate of A’/h plays a role of troubleshooting for the
adaptive estimation of the score function A'/h: with the alternative adaptive score function, the
rank statistic Si(b) is less jittery over the interval of b, as shown in Figure 2 (b). Therefore,
once h is obtained by using the locally adaptive smoothing technique, one might prefer the
latter nonparametric estimate of h'/h to the naive one.

Analogous to the asymptotically efficient rank estimators described above, we can construct
asymptotically efficient M-estimators. In fact, Lai and Ying (1994) showed consistency and
asymptotic normality of a class of M-estimators in the left-truncated and right-censored
regression model with known density of the errors and extended the idea of Lai and Ying
(1991b) on adaptive choice of score functions in constructing asymptotically efficient rank
estimators of B to M-estimators.

Since density f of the errors in model (1.1) is usually unknown, the optimal score function
for M-estimators ¢=(A'/h) —h, which is f//, is not available to form the asymptotically
efficient M-estimators. Therefore, we need to extend the idea described above for rank
estimators to M-estimators: the sample is divided into two disjoint subsets, the first of which

is {( ¥, £,07,x7):i<n/2}; from the first subsample, the root-finding statistics are

constructed (cf. Section 5 of Lai and Ying, 1994) with $.,,1 which is an estimate of (h’/h)-h

based on the second subsample of nz=n-m observations, and vice versa; analogous to (3.9),
combining the two subsample statistics gives the statistic to find asymptotically optimal

M-estimators. To adaptively find smooth consistent estimates 3,,,1 and @,,'2 of ¢=(h'/h)-h
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based on the two subsamples, we also use the locally adaptive smoothing techniques, as
described in Section 2. Replacing W,— and T? in the section by 3° ;—bx! and £ —bx! of each

subsample leads to the same problem of finding asymptotically optimal M-estimators as that
of rank estimators described earlier in this section.

4. Conclusion

In addition to the nonparametric estimation of the score function h'/h, we can improve the
root-finding scheme of (3.9) by taking an average of the zero-crossings obtained from a
number of replications of the cross—-validation method described in Section 3. However, for this
heavy computing, there needs a much less expensive way to adaptively estimate the score
functions for the rank and M-estimators.
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