• 제목/요약/키워드: Adaptive Flight Controller

검색결과 43건 처리시간 0.028초

Design of Adaptive Fuzzy Sliding Mode Controller based on Fuzzy Basis Function Expansion for UFV Depth Control

  • Kim Hyun-Sik;Shin Yong-Ku
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.217-224
    • /
    • 2005
  • Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system because the UFV contains both pitch and depth angle variables as well as multiple control planes, it requires robustness because of the possibility that it may encounter uncertainties such as parameter variations and disturbances, it requires a continuous control input because the system that has reduced power consumption and acoustic noise is more practical, and further, it has the speed dependency of controller parameters because the control forces of control planes depend on the operating speed. To solve these problems, an adaptive fuzzy sliding mode controller (AFSMC), which is based on the decomposition method using expert knowledge in the UFV depth control and utilizes a fuzzy basis function expansion (FBFE) and a proportional integral augmented sliding signal, is proposed. To verify the performance of the AFSMC, UFV depth control is performed. Simulation results show that the AFSMC solves all problems experienced in the UFV depth control system online.

Design of CCV adaptive flight control system under microburst type disturbances

  • Uchikado, Shigeru;Kanai, Kimio;Osa, Yasuhiro;Tanaka, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.271-276
    • /
    • 1994
  • In this paper we deal with a design of CCV adaptive flight control system having adaptive observer under the mircroburst circumstances. First, based on the observerbility indices of the controlled system, which is a general multi-variable one, the adaptive observer is constructed, and the unknown interactor matrix can be estimated by using the identified parameters. Next, CCV adaptive flight control law is calculated based upon the estimated ones. Finally, the proposed CCV adaptive flight controller is applied to STOL flying boat and numerical simulations under the microburst circumstances can be show to justify the proposed scheme.

  • PDF

신경 회로망을 이용한 강인 비행 제어 시스템: 동적 표면 설계 접근 (Robust Flight Control System Using Neural Networks: Dynamic Surface Design Approach)

  • 유성진;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1848-1849
    • /
    • 2006
  • The new robust controller design method is proposed for the flight control systems with model uncertainties. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides us with the ability to overcome the "explosion of complexity" problem of the backstepping controller. The SRWNNs are used to observe the arbitrary model uncertainties of flight systems and all their weights are trained on-line. From the Lyapunov stability analysis, their adaptation laws are induced and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a high performance aircraft (F-16) are utilized to validate the good tracking performance and robustness of the proposed control system.

  • PDF

신경회로망과 PCH을 이용한 재형상 비행제어기 (Development of a Reconfigurable Flight Controller Using Neural Networks and PCH)

  • 김낙완;김응태;이장호
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.422-428
    • /
    • 2007
  • This paper presents a neural network based adaptive control approach to a reconfigurable flight control law that keeps handling qualities in the presence of faults or failures to the control surfaces of an aircraft. This approach removes the need for system identification for control reallocation after a failure and the need for an accurate aerodynamic database for flight control design, thereby reducing the cost and time required to develope a reconfigurable flight controller. Neural networks address the problem caused by uncertainties in modeling an aircraft and pseudo control hedging deals with the nonlinearity in actuators and the reconfiguration of a flight controller. The effect of the reconfigurable flight control law is illustrated in results of a nonlinear simulation of an unmanned aerial vehicle Durumi-II.

신경 회로망을 이용한 강인 비행 제어 시스템: 동적 표면 설계 접근 (Robust Flight Control System Using Neural Networks: Dynamic Surface Design Approach)

  • 유성진;최윤호;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권12호
    • /
    • pp.518-525
    • /
    • 2006
  • This paper presents the adaptive robust control method for the flight control systems with model uncertainties. The proposed control system can be composed simply by a combination of the adaptive dynamic surface control (DSC) technique and the self recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides us with the ability to overcome the 'explosion of complexity' problem of the backstepping controller. The SRWNNs are used to observe the arbitrary model uncertainties of flight systems, and all their weights are trained on-line. From the Lyapunov stability analysis, their adaptation laws are induced and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a high performance aircraft (F-16) are utilized to validate the good tracking performance and robustness of the proposed control system.

PDSO tuning of PFC-SAC fault tolerant flight control system

  • Alaimo, Andrea;Esposito, Antonio;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.349-369
    • /
    • 2019
  • In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization ($P_DSO$). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed $P_DSO$ and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.

STT 미사일의 모델링 오차 보상을 위한 적응 제어 (Adaptive control to compensate the modeling error of STT missile)

  • 최진영;좌동경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1292-1295
    • /
    • 1996
  • This paper proposes an adaptive control technique for the autopilot design of STT missile. Dynamics of the missile is highly nonlinear and the equilibrium point is vulnerable to change due to fast maneuvering. Therefore nonlinear control techniques are desirable for the autopilot design of the missile. The nonlinear controller requires the exact model to obtain satisfactory performance. Generally a look-up table is used for the dynamic coefficients of a missile, so there must be coefficients error during actual flight, and the performance of the nonlinear controller using these data can be degraded. The proposed adaptive control technique compensates the nonlinear controller with modeling error resulting from the error of aerodynamic data and disturbance. To investigate the usefulness, the proposed method is applied to autopilot design of STT missile through simulations.

  • PDF

Automatic Landing in Adaptive Gain Scheduled PID Control Law

  • Ha, Cheol-Keun;Ahn, Sang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2345-2348
    • /
    • 2003
  • This paper deals with a problem of automatic landing guidance and control system design. The auto-landing control system for the longitudinal motion is designed in the classical PID controller. The controller gains are properly adapted to variation of the performance using fuzzy logic as a gain scheduler for the PID gains. This control logic is applied to the problem of the automatic landing control system design. From the numerical simulation using the 6DOF nonlinear model of the associated airplane, it is shown that the auto-landing maneuver is successfully achieved from the start of the flight conditions: 1500 ft altitude, 250 ft/sec airspeed and zero flight path angle.

  • PDF

An Adaptive Control Approach for Improving Control Systems with Unknown Backlash

  • Han, Kwang-Ho;Koh, Gi-Ok;Sung, Jae-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.360-364
    • /
    • 2011
  • Backlash is common in mechanical and hydraulic systems and severely limits overall system performance. In this paper, the development of an adaptive control scheme for systems with unknown backlash is presented. An adaptive backlash inverse based controller is applied to a plant that has an unknown backlash in its input. The harmful effects of backlash are presented. Compensation for backlash by adding a discrete adaptive backlash inverse structure and the gradient-type adaptive algorithm, which provides the estimated backlash parameters, are also presented. The supposed adaptive backlash control algorithms are applied to an aircraft with unknown backlash in the actuator of control surfaces. Simulation results show that the proposed compensation scheme improves the tracking performance of systems with backlash.

L1 적응제어기법을 이용한 틸트로터기의 자세제어 (Tiltrotor Attitude Control Using L1 Adaptive Controller)

  • 김낙원;김병수;유창선;강영신
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1226-1231
    • /
    • 2008
  • A design of attitude controller for a tiltrotor is presented augmenting L1 adaptive control, neural networks, and feedback linearization. The neural networks compensate for the modeling error caused by the lack of knowledge of tiltrotor dynamics while the L1 adaptive control allows high adaptation gains in adaptation laws thereby, satisfying tracking performance requirement. The efficacy of this control methodology is illustrated in high-fidelity nonlinear simulation of a tiltrotor by flying the tiltrotor in different flight modes from where the L1 adaptive controller with neural networks is originally designed for.