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Abstract

Backlash is common in mechanical and hydraulic systems and severely limits overall system performance. In this paper, the 

development of an adaptive control scheme for systems with unknown backlash is presented. An adaptive backlash inverse 

based controller is applied to a plant that has an unknown backlash in its input. The harmful effects of backlash are presented. 

Compensation for backlash by adding a discrete adaptive backlash inverse structure and the gradient-type adaptive algorithm, 

which provides the estimated backlash parameters, are also presented. The supposed adaptive backlash control algorithms 

are applied to an aircraft with unknown backlash in the actuator of control surfaces. Simulation results show that the proposed 

compensation scheme improves the tracking performance of systems with backlash. 
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1. Introduction

Actuator devices contain nonlinearities such as friction, 

dead-zone, saturation, backlash, and hysteresis. Many 

of these nonlinearities are not continuous, but rather 

discontinuous functions or even dynamic models. Backlash 

is a dynamic nonlinearity and is common in mechanical 

and hydraulic systems. The undesirable effects of backlash 

are the main factors that severely limit the performance of 

feedback systems. 

These undesirable effects consist of non-differentiable 

nonlinearities and include the decrease of static output 

accuracy, poor transient performance, limit cycles, and 

instability (Santos and Vieira, 2008; Slotine and Li, 1991; Tao 

and Kokotovic, 1993; Tao and Kokotovic, 1996).

Mechanical solutions such as spring loaded split gear 

assemblies and dual motor systems can satisfactorily handle 

the backlash problem. However, they are expensive, energy 

consuming, and increase the weight of the system. Therefore, 

it is desirable to find ways to achieve backlash compensation 

without such mechanical devices.

A commonly used approach to cancel the harmful effects 

of nonlinearities is the implementation of their inverse 

characteristics into the controller structure. A compensated 

inverse dynamics approach using adaptive and robust 

control techniques is presented in Song et al. (1994). A 

backlash compensation system using dynamic inversion is 

described in Selmic and Lewis (2001). 

A backlash inverse is used to reduce the harmful effects 

of the backlash in this paper. The parameter values of the 

backlash inverse are crucial to the control performance and, 

as such, they need to be estimated if the backlash is unknown 

or varies with time.

This paper is organized as follows: Section 2 presents the 

backlash compensation, that is, the backlash model and its 

inverse as well as the adaptive backlash inverse. Section 3 

introduces the adaptive backlash inverse control model, the 

controller structure, and the applied adaptive law. Section 4 
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analyzes the performance of our adaptive control approach 

through a numerical example and Section 5 presents the 

conclusions of this work.

2. Backlash Compensation

2.1 Backlash model

In contrast to the memoryless dead-zone, backlash has 

an element of memory and is dynamic. A widely accepted 

characteristic of backlash is shown Fig. 1, where v(t) is the 

input, u(t) is the output, and cr>0 is the right “crossing,” while 

cl>0 is the left “crossing” (Tao and Kokotovic, 1996). Typically, 

the concept of backlash is associated with gear trains as the 

schematic representation of backlash, as shown in Fig. 1b. 

Th e upward side is active when both v(t) and u(t) 

increase:

u(t) = m(v(t)-cr), v·(t)>0, u·(t)>0

Th e downward side is active when both v(t) and u(t) 

decrease:

u(t) = m(v(t)-cr), v·(t)<0, u·(t)<0

where m>0, cl<Cr are constant parameters. Th e motion on 

any inner segment is characterized by u·(t) = 0. A compact 

description of the continuous-time version of the backlash 

B(•) is given in Eq.(1)

(1)

Th e discrete-time version of the backlash model is also 

easy to visualize, as shown below:

(2)

(3)

where the values vl and vr are the v-axis projections of 

the intersections of the two parallel lines of slope m with 

the horizontal inner segment containing u(t-1) (Tao and 

Kokotovic, 1996).

A further insight into the nature of backlash can be gained 

from the waveform of the output u(t) when the input v(t) is 

the saw-tooth signal in Fig. 2.

2.2 Backlash inverse model

Th e desired function of a backlash inverse is to cancel 

the harmful eff ects of backlash on system performance. Th e 

ideal backlash inverse BI(•) will make the traverse of this 

segment instantaneous and thus cancel this undesirable 
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1. Introduction 
Actuator devices contain nonlinearities such as friction, 

dead-zone, saturation, backlash, and hysteresis. Many of these 
nonlinearities are not continuous, but rather discontinuous 
functions or even dynamic models. Backlash is a dynamic 
nonlinearity and is common in mechanical and hydraulic 
systems. The undesirable effects of backlash are the main 
factors that severely limit the performance of feedback 
systems.  

These undesirable effects consist of non-differentiable 
nonlinearities and include the decrease of static output 
accuracy, poor transient performance, limit cycles, and 
instability (Santos and Vieira, 2008; Slotine and Li, 1991; Tao 
and Kokotovic, 1993; Tao and Kokotovic, 1996). 

Mechanical solutions such as spring loaded split gear 
assemblies and dual motor systems can satisfactorily handle 
the backlash problem. However, they are expensive, energy 
consuming, and increase the weight of the system. Therefore, 
it is desirable to find ways to achieve backlash compensation 
without such mechanical devices. 

A commonly used approach to cancel the harmful effects of 
nonlinearities is the implementation of their inverse 
characteristics into the controller structure. A compensated 
inverse dynamics approach using adaptive and robust control 
techniques is presented in Song et al. (1994). A backlash 
compensation system using dynamic inversion is described in 
Selmic and Lewis (2001).  

A backlash inverse is used to reduce the harmful effects of 
the backlash in this paper. The parameter values of the 
backlash inverse are crucial to the control performance and, as 
such, they need to be estimated if the backlash is unknown or 
varies with time. 

This paper is organized as follows: Section 2 presents the 
backlash compensation, that is, the backlash model and its 
inverse as well as the adaptive backlash inverse. Section 3 
introduces the adaptive backlash inverse control model, the 
controller structure, and the applied adaptive law. Section 4 
analyzes the performance of our adaptive control approach 
through a numerical example and Section 5 presents the 
conclusions of this work. 
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2.1 Backlash model 
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element of memory and is dynamic. A widely accepted 
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trains as the schematic representation of backlash, as shown in 
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Fig. 1. (a) Backlash model, (b) Schematic representation. 
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where the values lv and rv are the v-axis projections of 
the intersections of the two parallel lines of slope m  with the 
horizontal inner segment containing ( 1)u t −  (Tao and 
Kokotovic, 1996). 
 

 
Fig. 2. Backlash response to a saw-tooth input. 

 
A further insight into the nature of backlash can be gained 

from the waveform of the output ( )u t  when the input ( )v t  
is the saw-tooth signal in Fig. 2. 
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The desired function of a backlash inverse is to cancel the 
harmful effects of backlash on system performance. The ideal 
backlash inverse ( )BI i will make the traverse of this segment 
instantaneous and thus cancel this undesirable backlash effect, 
as shown in Fig. 3. That is, given a desired signal ( )du t  for 

( )u t , a backlash inverse ( )BI i  is such that 
( ) ( ( ( )))d du t B BI u t=  as shown in Fig. 4. 
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Fig. 4. Backlash inverse response to a saw-tooth input. 
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In this paper, the continuous-time version of the backlash 
inverse model is not shown. This is because the discrete-time 
version has the following advantages. The discrete-time 
backlash inverse does not require knowledge of 

( ( ))dsign u t� for implementation. This makes a discrete-time 
adaptive inverse controller more practical than a continuous-
time adaptive controller, because such signal derivative 
knowledge is often unavailable in applications. In addition, 
modern control systems are most frequently implemented with 
digital controllers so that a discrete-time treatment is closer to 
actual practice (Tao and Kokotovic, 1996). 
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The backlash inverse ( )BI i  defined by Eq. (4) can be 
approximated by replacing the vertical jumps between its 
upward and downward lines by continuous curves with 
bounded gains. When the backlash parameters , ,l rm c c  are 
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In the next section, we use an adaptive backlash inverse 
( )BI i as part of the proposed adaptive control algorithm for 

plants with an unknown backlash ( )B i . 
 

3. Adaptive Backlash Inverse Control 
3.1 Discrete-time adaptive Backlash inverse 

In this section, the adaptive backlash inverse control 
structure and the applied adaptive law are presented. The goal 
of this section is to design a discrete-time adaptive backlash 

Fig. 2. Backlash response to a saw-tooth input.
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backlash eff ect, as shown in Fig. 3. Th at is, given a desired 

signal ud(t) for u(t), a backlash inverse BI(•) is such that ud(t) 

= B(BI(ud(t))) as shown in Fig. 4.

Th e discrete-time model of the backlash inverse is 

represented by the following mapping:

(4)

In this paper, the continuous-time version of the backlash 

inverse model is not shown. Th is is because the discrete-

time version has the following advantages. Th e discrete-time 

backlash inverse does not require knowledge of sign(u· d(t)) 

for implementation. Th is makes a discrete-time adaptive 

inverse controller more practical than a continuous-

time adaptive controller, because such signal derivative 

knowledge is often unavailable in applications. In addition, 

modern control systems are most frequently implemented 

with digital controllers so that a discrete-time treatment is 

closer to actual practice (Tao and Kokotovic, 1996).

2.3 Adaptive Backlash inverse

Th e backlash inverse BI(•) defi ned by Eq. (4) can be 

approximated by replacing the vertical jumps between its 

upward and downward lines by continuous curves with 

bounded gains. When the backlash parameters m, cl, cr are 

unknown, we can use their estimates 
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with the constants ,a bθ θ  being the lower and upper 
bounds of the known backlash parameter 

* mcθ = : a bmcθ θ≤ ≤ . These are determined from a priori 
knowledge of mc . A natural constant is that 0aθ ≥  since 

0mc ≥ . This projection ( )tθ  of ensures that �( ) 0mc t ≥ .  
A detailed proof of this is given by Tao and Kokotovic (Tao 

and Kokotovic, 1996), along with the stability and tracking 
properties of the closed loop system. 
 
 

4. Numerical Example 
It can be seen that some aircraft experience limit cycle 

oscillations (LCOs) related to actuator nonlinearities (Mattos, 
2008; Ross et al., 1979). This LCO of aircraft limits the 
performance of feedback systems and degrades aircraft 
handling qualities. Therefore, it can be seen as advantageous 
to eliminate such oscillations. One of the actuator 
nonlinearities, backlash, can also induce limit cycles and 
instability (Slotine and Li, 1991). According to Mattos (Mattos, 
2008) the adaptive controller is designed to eliminate small 
amplitude, self induced oscillations due to actuator 
nonlinearities of Russian Su-37 aircraft. 

This section presents the numerical example of the aircraft 
showing limit cycles and actuator nonlinearity in flight in 
order to show the effectiveness of the proposed adaptive 
backlash algorithms. Figure 6 shows the I/O of the actuator, 
which is the relation between control command and the 
deflection of control surface based on the flight data. 
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are similar to those shown in Fig. 1. These characteristics 
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intentionally not included. We insert the backlash model in the 
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response when backlash is applied. The parameters of 
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feedback control based on neural networks to the actuator 

nonlinearities of an aircraft. This approach is expected to be 

flexible with regard to various actuator nonlinearities.
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