Technical Paper

Int'l J. of Aeronautical & Space Sci. 12(4), 360–364 (2011) DOI:10.5139/IJASS.2011.12.4.360

An Adaptive Control Approach for Improving Control Systems with Unknown Backlash

Kwang Ho Han*, Gi Ok Koh*, Jaemin Sung and Byoung Soo Kim****

**Flight Control Team, Research & Development Division, Korea Aerospace Industries, Ltd., Sacheon 664-710, Korea*

***Department of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 660-701, Korea*

Abstract

Backlash is common in mechanical and hydraulic systems and severely limits overall system performance. In this paper, the development of an adaptive control scheme for systems with unknown backlash is presented. An adaptive backlash inverse based controller is applied to a plant that has an unknown backlash in its input. The harmful effects of backlash are presented. Compensation for backlash by adding a discrete adaptive backlash inverse structure and the gradient-type adaptive algorithm, which provides the estimated backlash parameters, are also presented. The supposed adaptive backlash control algorithms are applied to an aircraft with unknown backlash in the actuator of control surfaces. Simulation results show that the proposed compensation scheme improves the tracking performance of systems with backlash.

Key words: Adaptive control, Actuator nonlinearities, Backlash, Backlash inverse

1. Introduction

Actuator devices contain nonlinearities such as friction, dead-zone, saturation, backlash, and hysteresis. Many of these nonlinearities are not continuous, but rather discontinuous functions or even dynamic models. Backlash is a dynamic nonlinearity and is common in mechanical and hydraulic systems. The undesirable effects of backlash are the main factors that severely limit the performance of feedback systems.

These undesirable effects consist of non-differentiable nonlinearities and include the decrease of static output accuracy, poor transient performance, limit cycles, and instability (Santos and Vieira, 2008; Slotine and Li, 1991; Tao and Kokotovic, 1993; Tao and Kokotovic, 1996).

Mechanical solutions such as spring loaded split gear assemblies and dual motor systems can satisfactorily handle the backlash problem. However, they are expensive, energy consuming, and increase the weight of the system. Therefore, it is desirable to find ways to achieve backlash compensation without such mechanical devices.

A commonly used approach to cancel the harmful effects of nonlinearities is the implementation of their inverse characteristics into the controller structure. A compensated inverse dynamics approach using adaptive and robust control techniques is presented in Song et al. (1994). A backlash compensation system using dynamic inversion is described in Selmic and Lewis (2001).

A backlash inverse is used to reduce the harmful effects of the backlash in this paper. The parameter values of the backlash inverse are crucial to the control performance and, as such, they need to be estimated if the backlash is unknown or varies with time.

This paper is organized as follows: Section 2 presents the backlash compensation, that is, the backlash model and its inverse as well as the adaptive backlash inverse. Section 3 introduces the adaptive backlash inverse control model, the controller structure, and the applied adaptive law. Section 4

Copyright © 2011. The Korean Society for Aeronautical and Space Sciences

****** PhD Candidate

Received: October 01, 2011 Accepted: December 06, 2011

^{}** Professor, Corresponding author, E-mail : bskim@gnu.ac.kr

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

analyzes the performance of our adaptive control approach through a numerical example and Section 5 presents the **And Adaptive Conclusions of this work.**

2. Backlash Compensation

2.1 Backlash model *****Flight Control Team, Research & Development Division, Korea Aerospace Industries, Ltd., Sacheon 664-710, Korea **2. I Backlash Model Agreeming**

In contrast to the memoryless dead-zone, backlash has an element of memory and is dynamic. A widely accepted characteristic of backlash is shown Fig. 1, where $v(t)$ is the input, $u(t)$ is the output, and c _r>0 is the right "crossing," while c_i >0 is the left "crossing" (Tao and Kokotovic, 1996). Typically, t_i is a metric becoming (the minimization), $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ schematic representation of backlash, as shown in Fig. 1b. presented. Complete a discrete adding a discrete additional discrete adding a discrete adding a discrete and t

The upward side is active when both $v(t)$ and $u(t)$ increase: $s = \frac{1}{2}$

 $u(t) = m(v(t)-c_r)$, $\dot{v}(t) > 0$, $\dot{u}(t) > 0$ $u(t) = m(v(t))$

The downward side is active when both $v(t)$ and $u(t)$ decrease:

 $u(t) = m(v(t) - c_r)$, $\dot{v}(t) < 0$, $\dot{u}(t) < 0$

where $m > 0$, $c_f < C_r$ are constant parameters. The motion on
ny inner segment is characterized by $\dot{u}(t) = 0$. A compact any inner segment is characterized by $\dot{u}(t) = 0$. A compact description of the continuous-time version of the backlash is shown **Fig.** 1, where *v otherwise* $B(\bullet)$ is given in Eq.(1) μ memory and is dimensioned by $u(t) = 0$. A compact *r* segment is characterized by $\dot{u}(t) = 0$. A compact

$$
\dot{u}(t) = \begin{cases} m\dot{v}(t) \text{ if } \dot{v}(t) > 0 \text{ and } u(t) = m(v(t) - c_r), or \\ \text{ if } \dot{v}(t) < 0 \text{ and } u(t) = m(v(t) - c_i) \\ 0 \text{ otherwise} \end{cases}
$$
 (1)

Fig. 1. (a) Backlash model, (b) Schematic representation.

The discrete-time version of the backlash model is also easy to visualize, as shown below:

$$
v_{l} = \frac{u(t-1)}{m} + c_{l}, \ v_{r} = \frac{u(t-1)}{m} + c_{r}
$$
 (2)

$$
u(t) = B(v(t)) = \begin{cases} m(v(t) - c_i) & \text{if } v(t) \le v_i \\ m(v(t) - c_r) & \text{if } v(t) \ge v_r \\ u(t-1) & \text{if } v_i < v(t) < v_r \end{cases}
$$
 (3)

where the values v_i and v_r are the v-axis projections of the intersections of the two parallel lines of slope m with the horizontal inner segment containing $u(t-1)$ (Tao and V_{electro} 1996) Kokotovic, 1996). from the waveform of the output () *u t* when the input () *v t*

A further insight into the nature of backlash can be gained from the waveform of the output $u(t)$ when the input $v(t)$ is the saw-tooth signal in Fig. 2. A further margin into the fiat

2.2 Backlash inverse model backlash inverse () *BI* i will make the traverse of this segment

The desired function of a backlash inverse is to cancel the harmful effects of backlash on system performance. The ideal backlash inverse $BI(\bullet)$ will make the traverse of this segment instantaneous and thus cancel this undesirable

 T discrete-time model of the backlash inverse inverse inverse is the backlash inverse in **Fig. 3. Backlash inverse model.** Fig. 3. Backlash inverse model.

4 Backlash inverse response to a saw-tooth innut Fig. 4. Backlash inverse response to a saw-tooth input.

backlash effect, as shown in Fig. 3. That is, given a desired signal $u_d(t)$ for $u(t)$, a backlash inverse $BI(\bullet)$ is such that $u_d(t)$ $= B(BI(u_d(t)))$ as shown in Fig. 4.

The discrete-time model of the backlash inverse is **Fig. 3. Backlaring** in put. **Pig. 3. Backlary in put.** \mathbf{F} is a sample in put. \mathbf{F} is a sample in put. \mathbf{F}

$$
v(t) = BI(u_d(t)) = \begin{cases} v(t-1) \text{ if } u_d(t) = u_d(t-1) \\ \frac{u_d(t)}{m} + c_i \text{ if } u_d(t) < u_d(t-1) \\ \frac{u_d(t)}{m} + c_r \text{ if } u_d(t) > u_d(t-1) \end{cases} \tag{4}
$$

In this paper, the continuous-time version of the backlash ⎪ In this paper, the continuous-time version of the backlash
inverse model is not shown. This is because the discretetime version has the following advantages. The discrete-time backlash inverse does not require knowledge of $sign(i_d(t))$ for implementation. This makes a discrete-time adaptive inverse controller more practical than a continuoustime adaptive controller, because such signal derivative knowledge is often unavailable in applications. In addition, modern control systems are most frequently implemented modern control systems are most nequently impremented with digital controllers so that a discrete-time treatment is closer to actual practice (Tao and Kokotovic, 1996). ontinuous-time version of the set o backlash inverse does not require knowledge of $sign(u_d(t))$ vith digital controllers so that a discrete-time treatment is :
:loser to actual practice (Tao and Kokotovic, 1996). In this paper, the continuous-time vers the adaptive controller and derivative such signal derivative such signals of the signal derivative such signal derivative such as $\frac{1}{2}$ \mathbf{I} and Kokotovic, 1996).

2.3 Adaptive Backlash inverse 2.3 Adaptive Backlash inverse 2.3 Adaptive Backlash inverse

The backlash inverse $BI(\bullet)$ defined by Eq. (4) can be approximated by replacing the vertical jumps between its approximated by replacing the vertical jumps between its approximated by replacing the vertical jumps between its upward and downward lines by continuous curves with we obtain the expression upward and downward lines by continuous curves with bounded gains. When the backlash parameters m, c_b c_r are $e(t) = \theta(t-1)\omega(t-1) - \theta(t)$ unknown, we can use their estimates $\hat{m}, \hat{c}_r, \hat{c}_l$ to design a backlash inverse estimate: $v(t) = \widehat{BI}(u_d(t))$, characterized by

$$
v(t) = \widehat{BI}(u_d(t)) = \begin{cases} v(t-1) & \text{if } u_d(t) = u_d(t-1) \\ \frac{u_d(t)}{\widehat{m}} + \widehat{c}_i & \text{if } u_d(t) < u_d(t-1) \\ \frac{u_d(t)}{\widehat{m}} + \widehat{c}_r & \text{if } u_d(t) > u_d(t-1) \end{cases} \tag{5}
$$

 $BI(\bullet)$ as part of the proposed adaptive control algorithm for *BI*()i as part of the proposed adaptive control algorithm for plants with an unknown backlash *B*(•). In the next section, we use an adaptive backlash inverse In the next section, we use an adaptive backlash inverse

3. Adaptive Backlash Inverse Control In this section, the adaptive backlash inverse control

t Diegrete time adaptive Raeklash inverse of this section is to design a discrete time adaptive backlash inverse structure and the applied adaptive law are presented. The goal 3.1 Discrete-time adaptive Backlash inverse

In this section, the adaptive backlash inverse control structure and the applied adaptive law are presented. The goal of this section is to design a discrete-time adaptive backlash inverse controller to achieve asymptotic tracking,

a desired only despite the presence of backlash. In a desired the despite ine presence of backlash. despite the presence of backlash
 yt ut) ()absence of our design stabilize closed system make the *^t*

ich that $u_d(t)$ Let us consider a plant whose linear part is $G(s) = k_p / s$, where k_p is a known constant, assuming that the backlash where k_p is a known constant, assuming that the backlash inverse is slope $m>0$ is known, but its width is unknown. The linear part of the plant in discrete-time is given by:
 $y(t+1) = y(t) + u(t)$ time adaptive controller, because such signal derivative Let us consider a plant whose linear part is $G(s) = k_n / s$ sider a plant whose linear part is $G(s)$
known constant, assuming that the l
known, but its width is unknown. The ptie the presence of backlash.

et us consider a plant whose linear part is $G(s) = k_x / s$

et m_x is a known constant, assuming that the backlash

or m_y o is known, but its width is unknown. The linear

or m_y o is known where k In the presence of backlash we use the presence of σ

$$
y(t+1) = y(t) + u(t)
$$
 (6)

In the absence of backlash, our design objective to (4) stabilize the closed loop system and make the plant output $y(t)$ track a given reference signal $y_m(t)$ may be achieved by the controller:

the backlash
$$
u_d(t) = -y(t) + y_m(t+1)
$$
 (7)

ne discrete-
liscrete-time list on the presence of backlash we use this controller along of $\sin(n \cdot f)$ with an adaptive scheme designed to update the backlash in sign($u_d(t)$)

the adaptive backlash inverse $v(t) = \widehat{BI}(u_d(t))$ on-line, as shown in Fig. 5.

⎧ Since, by assumption, *m* is known and $c_r = -c_l = c$, we let Since, by assumption, *m* is known and $c_r = -c_l = c$, works $\hat{m}(t) = m$ and $\hat{m}c_l(t) = -m\hat{c}_r(t) = \hat{m}c_l(t)$ and introduce:

$$
\phi(t) = \theta(t) - \theta^*, \ \theta(t) = \widehat{mc}(t), \ \theta^* = mc
$$
\n(8)

As such, the backlash inverse error equation becomes:

is such, the backasan inverse error equation becomes:

$$
u(t) - u_d(t) = \phi(t)\omega(t) + d_b(t)
$$
(9)

In the next section, we use a adaptive backlash in the second section, we use an adaptive backlash in the second section, \hat{u} $\text{Wilcic } \omega(t) = \chi_t(t) - \chi_l(t) \text{ is the negative.}$ where $\omega(t) = \widehat{\chi}_r(t) - \widehat{\chi}_l(t)$ is the regressor.

(4) can be For the tracking error, $e(t) = y(t)-y_m(t)$, from Eq. (6) -(8), where $\omega(t) = \widehat{\chi}_r(t) - \widehat{\chi}_l(t)$ is the regressor.
For the tracking error, $e(t) = y(t)-y_m(t)$, from we obtain the expression:
 $e(t) = \theta(t-1)\omega(t-1) - \theta^* \omega(t-1) + d_b(t-1)$
An important quantity for use in the discrete-ti we obtain the expression: presence of backing compared to be a backlash.

$$
e(t) = \theta(t-1)\omega(t-1) - \theta^*\omega(t-1) + d_b(t-1)
$$
\n(10)

design a section, the adaptive backlash inverse control of acterized by and the and the angles and the angles are presented. The goals are presented. The goals are presen *law* is the estimation error, defined as: $A_{\rm eff}$ important quantity for use in the discrete-time adaptive ad An important quantity for use in the discrete-time adaptive law is the estimation error, defined as: slope 0 *m* > is known, but its width is unknown. The linear An important quantity for use in the discr *yt yt ut* (1) () () += + (6)

$$
\varepsilon(t) = e(t) + \theta(t)\omega(t-1) - \theta(t-1)\omega(t-1)
$$
\n(11)

 $\frac{1}{2}$ $\frac{1}{2}$ algorithm $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ algorithm is: $e(t) + \theta(t)\omega(t-1) - \theta(t-1)\omega(t-1)$

3 Eq. (11), our update law for $\theta(t)$ based to the endpoint of the set Using Eq. (11), our update law for $\theta(t)$ based on the p e algoriumi is:

$$
m(t) = m \text{ and } mc_i(t) = -mc_i(t) = mc(t) \text{ and introduce:}
$$
\n
$$
\phi(t) = \theta(t) - \theta^*, \ \theta(t) = \widehat{mc}(t), \ \theta^* = mc
$$
\n(8)\nAs such, the backlash inverse error equation becomes:\n
$$
u(t) - u_d(t) = \phi(t)\omega(t) + d_b(t)
$$
\n(9)\nwhere $\omega(t) = \widehat{x}_r(t) - \widehat{x}_i(t)$ is the regressor.\nFor the tracking error, $e(t) = y(t) - y_m(t)$, from Eq. (6) – (8),\nwe obtain the expression:\n
$$
e(t) = \theta(t-1)\omega(t-1) - \theta^*\omega(t-1) + d_b(t-1)
$$
\n(10)\nAn important quantity for use in the discrete-time adaptive\nlaw is the estimation error, defined as:\n
$$
\varepsilon(t) = e(t) + \theta(t)\omega(t-1) - \theta(t-1)\omega(t-1)
$$
\n(11)\nUsing Eq. (11), our update law for $\theta(t)$ based on the\ngradient-type algorithm is:\n
$$
\theta(t+1) = \theta(t) - \frac{\gamma\omega(t-1)\varepsilon(t)}{1+\omega^2(t-1)} + f(t), 0 < \gamma < 2
$$
\n(12)

where γ is the constant gain and the modifying term $f(t)$ \mathbf{D} () $\mathbf{$ by: .
'' ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ is found by: where γ is the constant gain and the modifying term $f(t)$

Fig. 5. Adaptive backlash compensation scheme.

 $\overline{}$

$$
f(t) = \begin{cases} 0 & \text{if } \theta(t) + g(t) \in [\theta^a, \theta^b] \\ \theta^b - \theta(t) - g(t) & \text{if } \theta(t) + g(t) > \theta^b \\ \theta^a - \theta(t) - g(t) & \text{if } \theta(t) + g(t) < \theta^a \end{cases}
$$
(13)

$$
g(t) = -\frac{\gamma \omega(t-1)\varepsilon(t)}{1+\omega^2(t-1)}
$$
\n(14)

with the constants θ^a , θ^b being the lower and upper bounds of the known backlash parameter θ* = *mc*: θ*^a*≤*mc*≤ bounds of the known backlash parameter θ^{*b*}. These are determined from a priori knowledge of *mc*. A natural constant is that θ^a > 0 since *mc* ≥ 0. This projection $\theta(t)$ of ensures that $\widehat{mc}(t) \ge 0$.

A detailed proof of this is given by Tao and Kokotovic (Tao A detailed proof of this is given by Tao and Kokotovic (Tao
and Kokotovic, 1996), along with the stability and tracking properties of the closed loop system. properties of the closed loop system. \mathbf{t} *b* b θ experiments the lower and upper and upper

It can be seen that some and some and some architecture in the some and some architecture in the some and some and some architecture in the some and some architecture in the some and some architecture in the some and some **4. Numerical Example** knowledge of *mc* . A natural constant is that 0 *^a* ^θ ≥ since

It can be seen that some aircraft experience limit cycle $h = \frac{1}{2}$ oscillations (LCOs) related to actuator nonlinearities (Mattos, 2008; Ross et al., 1979). This LCO of aircraft limits the performance of feedback systems and degrades aircraft handling qualities. Therefore, it can be seen as advantageous to eliminate such oscillations. One of the auvanta_i actuator nonlinearities, backlash, can also induce limit cycles and instability (Slotine and Li, 1991). According to Mattos (Mattos, 2008) the adaptive controller is designed to $b = 1$ shows the I/O of the I/O of the I/O of the I/O of the actuator, $b = 1/2$ of the actuator, $b = 1/2$ of the actuator, $c = 1/2$ of the actu eliminate small amplitude, self induced oscillations due to actuator nonlinearities of Russian Su-37 aircraft. and Kokotovic, 1996), along with the stability and the stability and the stability and the stability and the s p_{y} and mstability (should and p_{y} for p_{y} according to

This section presents the numerical example of the aircraft showing limit cycles and actuator nonlinearity in flight in order to show the effectiveness of the proposed adaptive backlash algorithms. Figure 6 shows the I/O of the actuator, which is the relation between control command and the deflection of control surface based on the flight data. this secuon presents the numerical example of the ancial which is the relation between control command and the

The backlash characteristics of the aircraft shown in Fig. 6 are similar to those shown in Fig. 1. These characteristics

adaptive backlash compensation. Figure 7 shows the aircraft Fig. 6. Flight data input of actuator vs. control surface deflection.

appear only in the specific aircraft and limited flight envelope as a form of LCO. The magnitudes and flight conditions are intentionally not included. We insert the backlash model in the horizontal tail actuator of the linear longitudinal model in order to compare the flight data and review the possibility of adaptive backlash compensation. Figure 7 shows the aircraft response when backlash is applied. The parameters of unknown backlash $B(\bullet)$ are selected as follows, $m=1, c_l=$ -0.08 , $c_r = 0.08$.

In order to eliminate the above harmful effects of backlash, we first apply the backlash inverse to the fixed type, not the adaptive type. This is because the signal, which is needed for the error equation for adaptive control from the aft backlash, cannot be used directly in a real aircraft control system.

The detailed parameters of the fixed backlash inverse are as follows, $m = 1$, $c_l = -0.04$, $c_r = 0.04$. The differences of parameters between the backlash and the fixed backlash inverse are identified as the backlash model error and the variances from aircrafts and time. Figure 8 shows the aircraft response with the above backlash and the fixed backlash inverse.

To eliminate the effects of backlash model error and the variances from aircrafts and time, we apply the adaptive backlash inverse algorithm presented in Section 3. The constant gain, γ of adaptive law is selected as 0.56. The signal aft backlash for adaptive law is satisfied of the purpose of this study directly. Further study are ongoing to generate the error equation using the difference of aircraft responses between the reference aircraft and the real aircraft. Fig. 9 shows the aircraft response when both backlashes are applied with the adaptive backlash inverse.

It can be seen from the adaptive inverse examples that the backlash inverse parameters approximately reach the same values of the backlash parameters, once the difference between them converge to zero.

5. Conclusions

The characteristic of backlash, the mathematical model, and the backlash inducing LCO mechanism are presented in this paper. Feasibility is shown by comparison with flight data. A discrete-time adaptive backlash inverse based controller is developed for an aircraft that has an unknown backlash at its input. We verify through simulations that the backlash inverse parameter values reach the backlash parameter values in a short time interval. This means that an adaptive inverse can cancel the effect of an unknown nonlinearity, and thus improve system tracking performance.

As a future project, we intend to augment the adaptive state

Fig. 7. Aircraft response when backlash is applied in horizontal tail actuator.

inverse. Fig. 8. Aircraft response both backlash are applied with fixed backlash inverse.

feedback control based on neural networks to the actuator nonlinearities of an aircraft. This approach is expected to be flexible with regard to various actuator nonlinearities. δ and the reference aircraft and the real aircraft. Fig. 9.1 σ

Acknowledgements inverse. Fig. 8. Aircraft response both backlash are applied with fixed backlash inverse. with the adaptive backlash inverse. knowledgements inverse examples that the adaptive inverse examples that the adaptive inverse examples that the

This work is supported by the Korea Aerospace Industries (KAI), by Priority Research Centers Program through the (1912), by Thomy Research Genters Trogram anough the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094016) and the the Ministry of Knowledge Economy 0094016) and the the Ministry of Knowledge Economy
(MKE), Korea, under the Information Technology Research Center (ITRC) support program supervised by the National Exercise the aircraft response program supervised by the rudiomal IT Industry Promotion Agency (NIPA)" (NIPA-2010-[C1090-1031-0007]). We appreciate their support and help. vational research foundation of Kolea (ivite) iunded by IT Industry Promotion Agenc backlash inverse algorithm presented in Section 3. The se reaction and a constant gain is selected as α is selected as α . shows the aircraft response when because when the annual here we have the supported by the

Fig. 9. Aircraft response when both backlash are applied with adaptive backlash inverse.

as future projects and to all the adaptive states in the adaptive state states in the adaptive state state st

Parameter values reach the backlash parameter values in a secondation of Korea (NRF) funded by the backlash par Ministry of Education, Science and Technology (2009-

de Mattos, B. S. (2008). *Flight Control Law Design: An* Industry Perspective. Brazil: Technological Institute of feedback control based on neural networks to the actuator support and help. de mattos, \mathbf{D} . \mathbf{S} . (2006). Fught Con cancel the effect of an unknown nonlinearity, and thus de Mattos, B. S. (2008). Flight Control Law Design: An *Industry Perspective*. Brazii: Technological filsulute of

Ross, J. L., McGirr, P. G., and Waniczek, O. J. Jr. (1979). ross, *f. E., McGIII, I. G., and Wanczek, G. J. J. (1919).*
Flying Qualities and Flight Control System Evaluation of the *B-1 Strategic Bomber. AFFTC-TR- 79-2*. **Acknowledgements Acknowledgements** de Mattos, B. S. (2008). *Flight Control Law Design: An*

Santos, T. S. and Vieira, F. H. T. (2008). An adaptive control approach for discrete-time systems with unknown Backlash at the input. TEMA Tendencias em Matematica Aplicada e *Computacional*, 9, 331-340. pproach for discrete-time systems with different backlash $\left(\frac{K}{\lambda}\right)$, by Priority Research Centers Program through the centers λ approach for discrete-time systems with unknown Backlash *Flying Qualities and Flight Control System*

Selmic, R. R. and Lewis, F. L. (2001). Neural net backlash compensation with Hebbian tuning using dynamic inversion. *Automatica*, 37, 1269-1277. ompensation with recoolan tuning asing aynamic inversion. $\overline{}$ support program support program supervised by the National ITRC $\overline{}$ is the National ITRC $\overline{}$ i compensation with Hebbian tuning using dynamic inversion.

somanca, 51, 1265–1211.
Slotine, J. J. E. and Li, W. (1991). *Applied Nonlinear Control.* **Englewood Cliffs: Prentice Hall.** *Matematica Aplicada e Computacional*, 9, 331-340.

Song, Y. D., Mitchell, T. L., and Lai, H. Y. (1994). Control of a class of nonlinear uncertain systems via compensated inverse dynamics approach. *IEEE Transactions on Automatic* Control, 39, 1866-1871. *Flying Qualities and Flight Control System* α class of nonlinear and ratio systems via compensated

Tao, G. and Kokotovic, P. V. (1993). Adaptive control of systems with backlash. *Automatica*, 29, 323-335. and Kokolovic, P. v. (1995). Adaptive control of *Eurah* Martin Barness Capuan, Adaptive control of

Tao, G. and Kokotovic, P. V. (1996). *Adaptive Control of* Systems with Actuator and Sensor Nonlinearities. New York: Wiley. Backlash at the input. *TEMA Tendencias em* approximator and Sonsor Nonlinearities-Now Vorknown
ith Actuator and Sonsor Nonlinearities-Now Vorkn Backlash at the input. *TEMA Tendencias em*