• Title/Summary/Keyword: Adaptive Acoustic Echo Canceller

Search Result 53, Processing Time 0.029 seconds

An Acoustic Echo Canceller for Stereo Using Blind Signal Separation (암묵신호분리를 이용한 스테레오 음향반향제거기)

  • Lee, Haeng Woo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.125-131
    • /
    • 2012
  • This paper is on a stereo acoustic echo canceller with the blind signal separation. The convergence speed of the stereo acoustic echo canceller is deteriorated due to mixing two residual signals in the update signal of each echo canceller. To solve this problem, we are to use the blind signal separation(BSS) method separating the mixed signals. The blind signal separation method can extracts the source signals by means of the iterative computations with two input signals. We had verified performances of the proposed acoustic echo canceller for stereo through simulations. The results of simulations show that the acoustic echo canceller for stereo using this algorithm operates stably without divergence in the normal state. And, when the speech signals were inputted, this echo canceller achieved about 3dB higher ERLE in the case of using the BSS algorithm than the case of not using the BSS algorithm. But this echo canceller didn't get good performances in the case of inputting the white noises as stereo signals.

An Echo Canceller Robust to Noise and Residual Echo

  • Kim, Hyun-Tae;Park, Jang-Sik
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.640-644
    • /
    • 2010
  • When we talk with hands-free in a car or noisy lobby, the performance of the echo canceller degrade because background noise added to echo caused by the distance from mouth to microphone is relatively long. It gives a reason for necessity of noise-robust and high convergence speed adaptive algorithm. And if acoustic echo canceller operated not perfectly, residual signal going through the echo canceller to far-end speaker remains residual echo, which degrade quality of talk. To solve this problem, post-processing needed to remove residual echo ones more. In this paper, we propose a new acoustic echo canceller, which has noise robust and high convergence speed, linked with linear predictor as a post-processor. By computer simulation, it is confirmed that the proposed algorithm shows better performance from acoustic interference cancellation (AIC) viewpoint.

Acoustic Echo Canceller using Adaptive IIR Filters with Prewhitening Method and Variable Step-Size LMS Algorithm

  • Cho, Ju Pil;Hwng, Tae Jin;Baik, Heung Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2E
    • /
    • pp.14-20
    • /
    • 1997
  • The future teleconferencing systems will need an appropriate system which controls properly the acoustic echo for the convenient communication. The conventional acoustic echo cancellation algorithms involve large adaptive filters identifying the impulse response of the echo path. The use of adaptive IIR filters appears to be a reasonable way to reduce computational complexity. Effective cancellation of acoustic echo presented in teleconferencing system requires that adaptive filters have a rapid convergence speed. One of the main problems of acoustic echo cancellation techniques is that the convergence properties degrade for an highly correlated signal input such as speech signals. By the way, the introduction of linear prediction filers onto the structure of the acoustic echo cancellation represents one approach to decorrelate the speech signal. And variable step-size LMS algorithm improves the convergence speed through a little increasing of computational complexity. In this paper, we applied these two methods to the acoustic echo canceller(AEC) and showed that these methods have better performances than the conventional AEC.

  • PDF

Acoustic Echo Cancellation for Hands-free Telephone

  • Lee, Haeng-Woo;Joo, Yu-Sang;Roh, Yea-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1917-1919
    • /
    • 2002
  • An adaptive algorithm for the acoustic echo canceller is presented. This paper proposes a modified LMS algorithm for the adaptive filter and applys the algorithm to he acoustic echo canceller, An objective of the proposed algorithm is to reduce the hardware complexity. In order to est the performances, a model of the echo path is established, and a program is described. The impulse reponses of the echo path have the length of 125msec or ore, and then the FIR filter with 1000 taps is required. he results from simulations show that the acoustic echo canceller adopting the proposed algorithm achieves the ERLE of 25dB or more within 1sec. If an echo canceller is implemented with this algorithm, its computation quantity s reduced to two times less than the one that is implemented with the normal LMS algorithm, without the degradation of performances.

  • PDF

An Implementation of Acoustic Echo Canceller Using Adaptive Filtering in Modulated Lapped Transform Domain (Modulated Lapped Transform 영역에서 적응 필터링을 이용한 음향 반향 제거기의 구현)

  • 백수진;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.425-433
    • /
    • 2003
  • Acoustic Echo Canceller (AEC) is a signal processing system for removing unwanted echo signals in teleconference and hands-free communication. Least mean square (LMS) algorithm is one of the adaptive echo cancellation algorithms and it has been most attractive because of its simplicity and robustness. However, the convergence properties of the LMS algorithm degrade with highly correlated input signals such as speech. For this reason, transform-domain adaptive filtering algorithm was introduced to decorrelate the colored input samples by using the orthogonal transform matrix such as DCT, DFT and then LMS adaptive filtering process is applied. In this paper, we propose a MLT domain adaptive echo canceller base on the MLT (Modulated lapped Transform) orthogonal transform matrix. The proposed algorithm achieves high decorrelation efficiency and fast convergence speed via modulated lapped transform of size 2NXN instead of NXN unitary transform such as DCT, DFT, Hadamad and it is applied to the acoustical echo cancellation system. Form the computer simulation with both synthesis and real speech, the proposed MLT domain adaptive echo canceller shows approximately twice faster convergence speed and 20∼30 ㏈ ERLE improvements over the DCT frequency domain acoustic echo cancellation system.

Implementation of Hands-Free Phone in a Car Using DSP (DSP를 이용한 차량용 핸즈프리 전화기의 구현)

  • Hong, Ki-Jun;Roh, Yi-Ju;Jeong, Kyung-Hoon;Kang, Dong-Wook;Yun, Kee-Bang;Kim, Ki-Doo
    • 전자공학회논문지 IE
    • /
    • v.44 no.4
    • /
    • pp.1-10
    • /
    • 2007
  • In this thesis, we study the implementation of hands-free phone in a car, taking acoustic echo canceller, in order to remove acoustic echo effectively. Conventional coustic echo canceller used for only adaptive filtering has much difficulty to solve both echo and double-talk problem. To tackle this problem, we propose acoustic echo canceller consisting of adaptive filter using a modified NLMS, VAD to catch exact voice activity duration using two independent forgetting factors, double-talk detector to detect fast and precise double talk duration using cross-correlation between microphone signal and residual echo, and output controller using VAD and double-talk detector. The proposed hands-free phone taking acoustic echo canceller shows the performance that has not acoustic echo and guarantees full duplex.

An Acoustic Echo Canceller for Double-talk by Blind Signal Separation (암묵신호분리를 이용한 동시통화 음향반향제거기)

  • Lee, Haeng-Woo;Yun, Hyun-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.237-245
    • /
    • 2012
  • This paper describes an acoustic echo canceller with double-talk by the blind signal separation. The acoustic echo canceller is deteriorated or diverged in the double-talk period. So we use the blind signal separation to estimate the near-end speech signal and to eliminate the estimated signal from the residual signal. The blind signal separation extracts the near-end signal with dual microphones by the iterative computations using the 2nd order statistical character. Because the mixture model of blind signal separation is multi-channel in the closed reverberation environment, we used the copied coefficients of echo canceller without computing the separation coefficients. By this method, the acoustic echo canceller operates irrespective of double-talking. We verified performances of the proposed acoustic echo canceller by simulations. The results show that the acoustic echo canceller with this algorithm detects the double-talk periods thoroughly, and then operates stably in the normal state without the divergence of coefficients after ending the double-talking. And it shows the ERLE of averagely 20dB higher than the normal LMS algorithm.

Performance Improvement of Stereo Acoustic Echo Canceler Using Gram-Schmidt Orthogonality Principle (그람-슈미트 (Gram-Schmidt) 직교원리를 이용한 스테레오 음향 반향 제거기의 성능향상)

  • 김현태;박장식;손경식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.28-34
    • /
    • 2001
  • In stereo acoustic echo canceller scheme, coefficients of adaptive filter converge very slowly or misconverge to real acoustic echo path in receiving room. This is due to cross-correlation in stereo signals. In this paper, a new preprocess algorithm is proposed to improve the performance of stereo AEC(acoustic echo canceller) without computational burden. The proposed algorithm reduces cross-correlation using Gram-Schmidt orthogonality principles and nonlinear filtering. Computer simulations demonstrate that this algorithm performs well compared to conventional ones. When the acoustic path of transmitting room is changed, stereo AEC using proposed algorithm is well performed.

  • PDF

Implementation of Acoustic Echo Canceller with FPGA

  • Lim, Un-Cheon;Moon, Dai-Tchul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3E
    • /
    • pp.79-84
    • /
    • 2004
  • In this paper, the AEC(acoustic echo canceller) is designed and implemented using VHDL(VHSIC hardware description language). The designed Echo Canceller employs the pipeline and the master-slave structure, and is realized with FPGA. As an adaptive algorithm, the Normalized LMS algorithm is used. For the coefficient adjustment, the Stochastic Iteration Algorithm(SIA) which uses only current residual values is used and the number of registers are evidently reduced and convergence speed is also much improved comparing to existing methods by using EAB of FPGA for FIR filter structure of transceiver. The designed Echo Canceller is verified with the test board implemented for this paper. From the timing simulation echo signals at about 1500 sampling data are converged and ERLE is improved by about 42-dB.

A comparative study of full-band and sub-band approaches to acoustic echo cancellation (음향 피드백 제거를 위한 전대역, 협대역 적응 필터의 비교)

  • 신민철;김상명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.645-651
    • /
    • 2003
  • The system in which a microphone and a loudspeaker are simultaneously used can cause an echo. The echo is caused by feedback between the output of the loudspeaker and the input of the microphone. The acoustic echo canceller is a device to cancel the echo in a communication system. Its general procedure for cancellation is first estimating the plant response of the feedback path and then eliminating the feedback signal from the input signal. In this paper, full-band and sub-band approaches are compared by using some simulation examples.

  • PDF