• Title/Summary/Keyword: Acyl-CoA:Cholesterol acyltransferase (ACAT)

Search Result 47, Processing Time 0.031 seconds

Development of Biologically Active Compound from Edible Plant Sources -V. -Phytol, ACAT (Acyl-CoA: Cholesterol Acyltransferase) Inhibitory Diterpenoid From the Leaves of Lactuca sativa L.- (식용 식물자원으로부터 활성물질의 탐색-V. -상추(Lactuca sativa L.)의 ACAT 억제 Diterpenoid, Phytol-)

  • Jang, Tae-O;Bang, Myun-Ho;Song, Myoung-Chong;Hong, Yoon-Hee;Kim, Ji-Young;Chung, Dae-Kyun;Pai, Tong-Kun;Kwon, Byung-Mok;Kim, Young-Kuk;Lee, Hyun-Sun;Kim, In-Ho;Baek, Nam-Ln
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.66-68
    • /
    • 2003

Effect of conjugated linoleic acid in diacylglycerol-rich oil on the lipid metabolism of C57BL/6J mice fed a high-fat high-cholesterol diet

  • Lee, Jeung Hee;Cho, Kyung-Hyun;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.1
    • /
    • pp.47-58
    • /
    • 2014
  • The effect of conjugated linoleic acid (CLA) isomers esterified in diacylglycerol (DAG)-rich oil on lipid metabolism was investigated. Since dietary DAG has been known to induce the regression of atherosclerosis, CLA-DAG and olive-DAG oils containing similar levels of DAG (51.4~54.2%) were synthesized from olive oil. Hyperlipidemic C57BL/6J mice were then fed high-fat high-cholesterol diets supplemented with these oils (5% each) for 7 wk. The CLA-DAG diet containing 2.1% CLA isomers (0.78% c9,t11-CLA; 1.18% t10,c12-CLA) remarkably increased the levels of total plasma cholesterol and glutamic oxaloacetic transaminase (GOT) along with hepatic cholesterol and triacylglycerol (TAG) contents. Furthermore, the CLA-DAG diet inhibited fat uptake into adipose tissue whereas fat deposition (especially in the liver) was increased, resulting in the development of fatty livers. Hepatic fatty acid composition in the CLA-DAG mice was different from that of the olive-DAG mice, showing higher ratios of C16:1/C16:0 and C18:1/C18:0 in the liver. The activity of hepatic acyl-CoA:cholesterol acyltransferase (ACAT) was higher in CLA-DAG mice while plasma lecithin:cholesterol acyltransferase (LCAT) activity and the ferric reducing ability of plasma (FRAP) were lower in CLA-DAG mice compared to the olive-DAG animals. Results of the present study suggest that CLA incorporation into DAG oil could induce atherosclerosis in mice.

Screening of Anti-atherogenic Substances from Insect Resources (곤충자원으로부터 항동맥경화 활성물질 탐색)

  • Park, Doo-Sang;Yoon, Mi-Ae;Xu, Ming-Zhe;Yu, Ha-Na;Kim, Ju-Ryoung;Jeong, Tae-Sook;Park, Ho-Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.3 s.138
    • /
    • pp.233-238
    • /
    • 2004
  • Lipoprotein-associated phospholipase $A_2\;(Lp-PLA_2)$ is a potential biomarker of coronary heart disease and plays an important proinflammatory role in the progression of atherosclerosis. Also acyl-CoA: cholesterol acyltransferase (ACAT) and oxidized low-density lipoprotein (LDL) playa key role in atherosclerosis, respectively. And so, the inhibitory activities of the methanol extracts of 42 insect resources were examined on $Lp-PLA_2$, ACAT, and LDL oxidation for screening of anti-atherogenic substances. Among them, the methanol extracts of Eurydema rugosa significantly inhibited all of upper three activities. Several kinds of tested insects having high inhibitory effect with the methanol extracts were extracted with n-hexane, ethyl acetate, and acetone, and their inhibitory activities were tested.

The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet

  • Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • This study determined the effects of fucoxanthin on gene expressions related to lipid metabolism in rats with a high-fat diet. Rats were fed with normal fat diet (NF, 7% fat) group, high fat diet group (HF, 20% fat), and high fat with 0.2% fucoxanthin diet group (HF+Fxn) for 4 weeks. Body weight changes and lipid profiles in plasma, liver, and feces were determined. The mRNA expressions of transcriptional factors such as sterol regulatory element binding protein (SREBP)-1c, Carnitine palmitoyltransferase-1 (CPT1), Cholesterol $7{\alpha}$-hydroxylase1 (CYP7A1) as well as mRNA expression of several lipogenic enzymes were determined. Fucoxanthin supplements significantly increased plasma high density lipoprotein (HDL) concentration (P < 0.05). The hepatic total lipids, total cholesterols, and triglycerides were significantly decreased while the fecal excretions of total lipids, cholesterol, and triglycerides were significantly increased in HF+Fxn group (P < 0.05). The mRNA expression of hepatic Acetyl-CoA carboxylase (ACC), Fatty acid synthase (FAS), and Glucose-6-phosphate dehydrogenase (G6PDH) as well as SREBP-1C were significantly lower in HF+Fxn group compared to the HF group (P < 0.05). The hepatic mRNA expression of Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and Acyl-CoA cholesterol acyltransferase (ACAT) were significantly low while lecithin-cholesterol acyltransferase (LCAT) was significantly high in the HF+Fxn group (P < 0.05). There was significant increase in mRNA expression of CPT1 and CYP7A1 in the HF+Fxn group, compared to the HF group (P < 0.05). In conclusion, consumption of fucoxanthin is thought to be effective in improving lipid and cholesterol metabolism in rats with a high fat diet.

Phenylpropanoids from Myristica fragrans Houtt (육두구(Myristica fragrans Houtt)로부터 Phenylpropanoid의 분리)

  • Song, Myoung-Chong;Ahn, Eun-Mi;Bang, Myun-Ho;Kim, Se-Young;Rho, Yeong-Deok;Kwon, Byuong-Mog;Lee, Hyun-Sun;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.366-369
    • /
    • 2004
  • Myristica fragrans Houtt were extracted in 80% aq. MeOH and solvent fractionated sing $CHCl_3$, EtOAc, n-BuOH and water, successively. The n-BuOH fraction gave three phenylpropanoids through application of silica gel column chromatographies. The chemical structures of the phenylpropanoids were determined by the interpretation of several spectral data, including NMR and MS as meso-dihydroguaiaretic acid (1), nectandrin B (2) and syringin methyl ether (3). Compound 1, which was first isolated from this plant by authors, showed inhibitory activities with $60.0{\pm}2.1%\;(100\;{\mu}g/ml),\;42.6{\pm}0.9%\;(140\;{\mu}g/ml)\;and\;12.2{\pm}0.2%\;(200\;{\mu}g/ml)$ on ACAT(acyl-CoA:Cholesterol Acyltransferase), chitin synthase III and HMG-CoA reductase (3-hydroxy-3-methylglutaryl coenzyme A reductase), respectively. Compound 3 showed inhibitory activities with $27.2{\pm}0.9%\;(100\;{\mu}g/ml),\;45.5{\pm}0.8%\;(200\;{\mu}g/ml)$ on ACAT and chitin synthase III.

Cytotoxic and ACAT-inhibitory Sesquiterpene Lactones from the Root of Ixeris dentata forma albiflora

  • Ahn, Eun-Mi;Bang, Myun-Ho;Song, Myoung-Chong;Park, Mi-Hyun;Kim, Hwa-Young;Kwon, Byoung-Mog;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.937-941
    • /
    • 2006
  • Ixeris dentata forma albiflora was extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH and $H_{2}O$. Eight sesquiterpenes were isolated through repeated silica gel and octadecyl silica gel ($C_{18},\;ODS$) column chromatography of the EtOAc and n-BuOH fractions. Physicochemical analysis using NMR, MS and IR revealed the chemical structures of the sesquiterpenes, which were zaluzanin (1), 9a-hydroxyguaian-4(15), 10(14), 11 (13)-triene-6, 12-olide(2), $3{\beta}-O-{\beta}-D-glucopyranosyl-8{\beta}-hydroxyguaian$-4(15), 10(14)-diene-6, 12-olide (3), $3-O-{\beta}-D-glucopyranosyl-8{\beta}-hydroxyguauan$-10(14)-ene-6, 12-olide (4), ixerin M (5), glucozaluzanin C (6), crepiside I (7), and ixerin D (8). This is the first time that these sesquiterpene lactones have been isolated from this plant. Compounds 1, 2 and 7 revealed relatively high cytotoxicities on human colon carcinoma cell and lung adeno-carcinoma cell, while compounds 5 and 7 showed acyl-CoA: cholesterol acyltransferase (ACAT) inhibitory activity.

Study on the hypochlolesterolemic and antioxidative effects of tyramine derivatives from the root bark of Lycium chenese Miller

  • Cho, Sung-Hee;Park, Eun-Jung;Kim, Eun-Ok;Choi, Sang-Won
    • Nutrition Research and Practice
    • /
    • v.5 no.5
    • /
    • pp.412-420
    • /
    • 2011
  • The aim of the present study was to investigate the hypocholesterolemic effect and potential of tyramine derivatives from Lycii Cortex Radicis (LCR), the root bark of lycium (Lycium chenese Miller) in reducing lipid peroxidation. The activities of enzymes, hepatic 3-hydroxy 3-methylglutaryl (HMG) CoA reductase and acyl-CoA:cholesterol acyltransferase (ACAT) and LDL oxidation were measured in vitro and animal experiments were also performed by feeding LCR extracts to rats. The test compounds employed for in vitro study were trans-N-p-coumaroyltyramine (CT) and trans-N-feruloyltyramine (FT), LCR components, N-(p-coumaroyl)serotonin (CS) and N-feruloylserotonin (FS) from safflower seeds, ferulic acid (FA) and 10-gingerol. It was observed that FT and FS at the concentration of 1.2 mg/mL inhibited liver microsomal HMG CoA reductase activity by ~40%, but no inhibition of activity was seen in the cases of CT, CS, FA and 10-gingerol. Whereas, ACAT activity was inhibited ~50% by FT and CT, 34-43% by FS and CS and ~80% by 10-gingerol at the concentration of 1 mg/mL. A significant delay in LDL oxidation was induced by CT, FT, and 10-gingerol. For the animal experiment, five groups of Sprague-Dawley male rats were fed high fat diets containing no test material (HF-control), 1 and 2% of LCR ethanol extract (LCR1 and LCR2), and 1% of extracts from safflower seed (Sat) and ginger (Gin). The results indicated that total cholesterol level was significantly lower in Saf, LCR2 and Gin groups, and HDL cholesterol level was lower only in Gin group when compared with HF-control group; while there was no difference in the serum triglyceride levels among the five experimental groups. The level of liver cholesterol was significantly lower in LCR1 and LCR2 groups than HF-control Serum levels of TBARS were significantly lower only in LCR2 group when compared with HF-control group. From the observed results, we concluded that LCR can be utilized as a hypocholesterolemic ingredient in combination with ginger, especially for functional foods.

A Putative Histone Deacetylase Modulates the Biosynthesis of Pestalotiollide B and Conidiation in Pestalotiopsis microspora

  • Niu, Xueliang;Hao, Xiaoran;Hong, Zhangyong;Chen, Longfei;Yu, Xi;Zhu, Xudong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.579-588
    • /
    • 2015
  • Fungi of the genus Pestalotiopsis have drawn attention for their capability to produce an array of bioactive secondary metabolites that have potential for drug development. Here, we report the determination of a polyketide derivative compound, pestalotiollide B, in the culture of the saprophytic fungus Pestalotiopsis microspora NK17. Structural information acquired by analyses with a set of spectroscopic and chromatographic techniques suggests that pestalotiollide B has the same skeleton as the penicillide derivatives, dibenzodioxocinones, which are inhibitors of cholesterol ester transfer protein (CETP), and as purpactins A and C', inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). Strain NK17 can make a fairly high yield of pestalotiollide B (i.e., up to 7.22 mg/l) in a constitutive manner in liquid culture. Moreover, we found that a putative histone deacetylase gene, designated as hid1, played a role in the biosynthesis of pestalotiollide B. In the hid1 null mutant, the yield of pestalotiollide B increased approximately 2-fold to 15.90 mg/l. In contrast, deletion of gene hid1 led to a dramatic decrease of conidia production of the fungus. These results suggest that hid1 is a modulator, concerting secondary metabolism and development such as conidiation in P. microspora. Our work may help with the investigation into the biosynthesis of pestalotiollide B and the development for new CETP and ACAT inhibitors.

Development of Biologically Active Compounds from Edible Plant Sources XXII. Triterpenoids from the Aerial Parts of Sajabalssuk (Artemisia princeps PAMPANINI) (식용식물자원으로부터 활성물질의 탐색-XXII. 사자발쑥(Artemisia princeps PAMPANINI)의 지상부로부터 Triterpenoid의 분리)

  • Bang, Myun-Ho;Cho, Jin-Gyeong;Song, Myoung-Chong;Lee, Dae-Young;Han, Min-Woo;Chung, Hae-Gon;Jeong, Tae-Sook;Lee, Kyung-Tae;Choi, Myung-Sook;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.223-227
    • /
    • 2008
  • The aerial parts of Sajabalssuk (Artemisia princeps PAMPANINI, Sajabalssuk) was extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH and $H_2O$, successively. From the EtOAc fraction, three cycloartane-type triterpnoids and one ursane-type triterpenoid were isolated through the repeated silica gel, ODS and Sephadex LH-20 column chromatographies. From the results of physico-chemical data including NMR, MS and IR, the chemical structures of the triterpenoids were determined as wrightial (1), wrightial acetate (2), 27-norcycloart-20(21)-ene-25-al-3${\beta}$-ol acetate (3) and ursolic acid (4). No report has been found for isolation of compound 3 in the literature so far, and compounds 1, 2 and 3 were the first to be isolated from Sajabalssuk (Artemisia princeps PAMPANINI, Sajabalssuk). Also, compound 1 showed Acyl-CoA:Cholesterol acyltransferase (hACAT-1) and hACAT-2 inhibitory activity with the $IC_{50}$ values of 33.0 and 45.0 ${\mu}g/ml$, respectively. Compounds 2 and 3 inhibited hACAT-1 activity with the $IC_{50}$ values of 12.0 and 16.0 ${\mu}g/ml$, respectively.

Biofunctional Activities of Citrus Flavonoids (감귤류 플라보노이드의 생리기능 활성)

  • Cha, Jae-Young;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.122-128
    • /
    • 2001
  • This review showed a discussion on the biofunctional activities of citrus flavonoids. The major flavonoids of citrus species, hesperidin, hesperetin, naringin, and naringenin, were selected to evaluate their biological effects on the lipid metabolism in rats and hamsters, the proliferation of human hepatocyte HepG2 cells, and the antioxidative effect in lipid peroxidation models. These flavonoids showed hypotriglyceridemic effect in hamsters and hypochloesterolemic effect in rats. They also significantly inhibited the activities of phosphatidate phophohydrolase and acyl-CoA: cholesterol acyltransferase, which are key enzymes for biosynthesis of triglyceride and cholesterol, repectively, in vivo and in vitro experiments. These biofunctional activities by citrus flavonoids were shown more potent in the aglycone flavonoids, hespreretin and naringenin, than their corresponding glycoside flavonoids, hesperidin and naringin. These aglycone flavonoids also have inhibitory effects on proliferation of human hepatocyte cancer HepG2 cells. Hesperidin showed lowering activities of cellular triglyceride and cholesterol concentrations in HepG2 cells. Citrus flavonoids have significant importance in functional food industry as biofunctional active ingredients.

  • PDF