Browse > Article
http://dx.doi.org/10.4014/jmb.1409.09067

A Putative Histone Deacetylase Modulates the Biosynthesis of Pestalotiollide B and Conidiation in Pestalotiopsis microspora  

Niu, Xueliang (State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University)
Hao, Xiaoran (State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University)
Hong, Zhangyong (Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University)
Chen, Longfei (State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University)
Yu, Xi (State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University)
Zhu, Xudong (State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.5, 2015 , pp. 579-588 More about this Journal
Abstract
Fungi of the genus Pestalotiopsis have drawn attention for their capability to produce an array of bioactive secondary metabolites that have potential for drug development. Here, we report the determination of a polyketide derivative compound, pestalotiollide B, in the culture of the saprophytic fungus Pestalotiopsis microspora NK17. Structural information acquired by analyses with a set of spectroscopic and chromatographic techniques suggests that pestalotiollide B has the same skeleton as the penicillide derivatives, dibenzodioxocinones, which are inhibitors of cholesterol ester transfer protein (CETP), and as purpactins A and C', inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). Strain NK17 can make a fairly high yield of pestalotiollide B (i.e., up to 7.22 mg/l) in a constitutive manner in liquid culture. Moreover, we found that a putative histone deacetylase gene, designated as hid1, played a role in the biosynthesis of pestalotiollide B. In the hid1 null mutant, the yield of pestalotiollide B increased approximately 2-fold to 15.90 mg/l. In contrast, deletion of gene hid1 led to a dramatic decrease of conidia production of the fungus. These results suggest that hid1 is a modulator, concerting secondary metabolism and development such as conidiation in P. microspora. Our work may help with the investigation into the biosynthesis of pestalotiollide B and the development for new CETP and ACAT inhibitors.
Keywords
Pestalotiopsis microspora; pestalotiollide; penicillide; dibenzodioxocinone; CETP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Xu J, Aly AH, Wray V, Proksch P. 2011. Polyketide derivatives of endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Tetrahedron Lett. 52: 21-25.   DOI   ScienceOn
2 Yang XL, Zhang JZ, Luo DQ. 2012. The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus. Nat. Prod. Rep. 29: 622-641.   DOI   ScienceOn
3 Zhang Q, Deng CL, Fang LS, Xu WW, Zhao Q, Zhang JG, et al. 2013. Synthesis and evaluation of the analogues of penicillide against cholesterol ester transfer protein. Chin. J. Chem. 31: 355-370.   DOI   ScienceOn
4 Paz Z, Garcia-Pedrajas MD, Andrews DL, Klosterman SJ, Baeza-Montanez L, Gold SE. 2011. One Step Construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genet. Biol. 48: 677-684.   DOI   ScienceOn
5 Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N, Grunstein M. 2002. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109: 437-446.   DOI   ScienceOn
6 Tomoda H, Nishida H, Masuma R, Cao J, Okuda S, Omura S. 1991. Purpactins, new inhibitors of acyl-CoA: Cholesterol acyltrasferase produced by Penicillium purpurogenum I. J. Antibiot. 44: 136-143.   DOI
7 Salituro GM, Pettibone DJ, Clineschmidt BV, Williamson JM, Zink DL. 1993. Potent, non-peptidic oxytocin receptor antagonists from a natural source. Bioorg. Med. Chem. Lett. 3: 337-340.   DOI   ScienceOn
8 Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP. 2007. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot. Cell 6: 1656-1664.   DOI   ScienceOn
9 Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM. 1996. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142: 435-440.   DOI   ScienceOn
10 Trojer P, Brandtner EM, Brosch G, Loidl P, Galehr J, Linzmaier R, et al. 2003. Histone deacetylases in fungi: novel members, new facts. Nucleic Acids Res. 31: 3971-3981.   DOI   ScienceOn
11 Wang A, Kurdistani SK, Grunstein M. 2002. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 298: 1412-1414.   DOI   ScienceOn
12 Nishida H, Tomoda H, Cao J, Okuda S, Omura S. 1991. Purpactins, new inhibitors of acyl-CoA: cholesterol acyltrasferase produced by Penicillium purpurogenum II. J. Antibiot. 44: 144-151.   DOI
13 Ishida T, Bounds SVJ, Caldwell J, Drake A, Takeshita M. 1996. The absolute configuration of the four stereoisomers of trans-anethole diol (1-(4’-methoxyphenyl)-1,2-propanediol), a metabolite of anethole in the rat. Tetrahedron Asymmetry 7: 3113-3118.   DOI   ScienceOn
14 Kathiravan G, Raman VS. 2010. In vitro TAXOL production, by Pestalotiopsis breviseta- A first report. Fitoterapia 81: 557-564.   DOI   ScienceOn
15 Lee I, Oh JH, Shwab EK, Dagenais TR, Andes D, Keller NP. 2009. HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet. Biol. 46: 782-790.   DOI   ScienceOn
16 Li J, Wu XF, Ding G, Feng Y, Jiang XJ, Guo LD, Che YS. 2012. α-Pyrones and pyranes from the plant pathogenic fungus Pestalotiopsis scirpina. Eur. J. Org. Chem. 2012: 2445-2452.   DOI   ScienceOn
17 Li Y, Wang C, Liu W, Wang G, Kang Z, Kistler HC, Xu JR. 2011. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Mol. Plant Microbe Interact. 24: 487-496.   DOI   ScienceOn
18 Maharachchikumbura SSN, Guo LD, Chukeatirote E, Bahkali AH, Hyde KD. 2011. Pestalotiopsis - morphology, phylogeny, biochemistry and diversity. Fungal Divers. 50: 167-187.   DOI
19 Palmer JM, Perrin RM, Dagenais TR, Keller NP. 2008. H3K9 methylation regulates growth and development in Aspergillus fumigatus.Eukaryot. Cell 7: 2052-2060.   DOI   ScienceOn
20 Bruckner D, Hafner FT, Li V, Schmeck C, Telser J, Vakalopoulos A, Wirtz G. 2005. Dibenzodioxocinones - a new class of CETP inhibitors. Bioorg. Med. Chem. Lett. 15: 3611-3614.   DOI   ScienceOn
21 Bulger M. 2005. Hyperacetylated chromatin domains: Lessons from heterochromatin. J. Biol. Chem. 280: 21689-21692.   DOI   ScienceOn
22 Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ. 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14: 3206-3214.
23 Cichewicz RH. 2010. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat. Prod. Rep. 27: 11-22.   DOI
24 Gregoretti IV, Lee YM, Goodson HV. 2004. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338: 17-31.   DOI   ScienceOn
25 de Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F. 2004. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427: 370-374.   DOI   ScienceOn
26 Ding SL, Liu WD, Iliuk A, Ribot C, Vallet J, Tao A, et al. 2010. The Tig1 histone deacetylase complex regulates infectious growth in the rice blast fungus Magnaporthe oryzae. Plant Cell 22: 2495-2508.   DOI   ScienceOn
27 Graessle S, Dangl M, Haas H, Mair K, Trojer P, Brandtner EM, et al. 2000. Characterization of two putative histone deacetylase genes from Aspergillus nidulans. Biochim. Biophys. Acta 1492: 120-126.   DOI   ScienceOn
28 Hao X, Ji Y, Liu S, Bi J, Bi Q, Pan J, Zhu X. 2012. Optimized integration of T-DNA in the taxol-producing fungus Pestalotiopsis malicola. Afr. J. Biotechnol. 11: 771-776.
29 Brakhage AA, Schroeckh V. 2011. Fungal secondary metabolites - Strategies to activate silent gene clusters. Fungal Genet. Biol. 48: 15-22.   DOI   ScienceOn
30 Adams TH, Wieser JK, Yu JH. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62: 35-54.