Browse > Article

Development of Biologically Active Compounds from Edible Plant Sources XXII. Triterpenoids from the Aerial Parts of Sajabalssuk (Artemisia princeps PAMPANINI)  

Bang, Myun-Ho (Skin Biotechnology Center)
Cho, Jin-Gyeong (The Graduate School of Biotechnology & Plant Metabolism Research Center)
Song, Myoung-Chong (The Graduate School of Biotechnology & Plant Metabolism Research Center)
Lee, Dae-Young (The Graduate School of Biotechnology & Plant Metabolism Research Center)
Han, Min-Woo (The Graduate School of Biotechnology & Plant Metabolism Research Center)
Chung, Hae-Gon (Ganghwa Agricultural R&D Center)
Jeong, Tae-Sook (National Research Laboratory of Lipid Metabolism & Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology)
Lee, Kyung-Tae (Department of Biochemistry, College of Pharmacy, Kyung-Hee University)
Choi, Myung-Sook (Department of Food Science and Nutrition, Kyungpook National University)
Baek, Nam-In (The Graduate School of Biotechnology & Plant Metabolism Research Center)
Publication Information
Applied Biological Chemistry / v.51, no.3, 2008 , pp. 223-227 More about this Journal
Abstract
The aerial parts of Sajabalssuk (Artemisia princeps PAMPANINI, Sajabalssuk) was extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH and $H_2O$, successively. From the EtOAc fraction, three cycloartane-type triterpnoids and one ursane-type triterpenoid were isolated through the repeated silica gel, ODS and Sephadex LH-20 column chromatographies. From the results of physico-chemical data including NMR, MS and IR, the chemical structures of the triterpenoids were determined as wrightial (1), wrightial acetate (2), 27-norcycloart-20(21)-ene-25-al-3${\beta}$-ol acetate (3) and ursolic acid (4). No report has been found for isolation of compound 3 in the literature so far, and compounds 1, 2 and 3 were the first to be isolated from Sajabalssuk (Artemisia princeps PAMPANINI, Sajabalssuk). Also, compound 1 showed Acyl-CoA:Cholesterol acyltransferase (hACAT-1) and hACAT-2 inhibitory activity with the $IC_{50}$ values of 33.0 and 45.0 ${\mu}g/ml$, respectively. Compounds 2 and 3 inhibited hACAT-1 activity with the $IC_{50}$ values of 12.0 and 16.0 ${\mu}g/ml$, respectively.
Keywords
Acyl-CoA:Cholesterol acyltransferase (ACAT); Artemisia princeps PAMPANINI; Sajabalssuk; wrightial; wrightial acetate; 27-norcycloart-20(21)-ene-25-al-3${\beta}$-ol acetate; ursolic acid; sajabalal acetate;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Shin, D. H., In, J. G., Yu, S. R. and Choi, K. S. (2005) Investigation of medicinal substance from in vitro cultured cells and leaves of Artemisia princeps var. orientalis. Korean J. Medicinal Crop Sci. 13, 69-76   과학기술학회마을
2 Bang, M. H., Kim, D. H., Yoo, J. S., Lee, D. Y., Song, M. C., Yang, H. J., Jeong, T. S., Lee, K. T., Choi, M. S., Chung, H. G. and Baek, N. I. (2005) Isolation and identification of flavonoids from the aerial parts of Sajabalssuk (Artemisia herba). J. Korean Soc. Appl. Biol. Chem. 48, 418-420
3 De Pascual, T. J., Urones, J. G., Marcos, I. S., Basabe, P., Sexmero, C., Maria J. and Fernandez, . R. (1987) Triterpenes from Euphorbia broteri. Phytochem. 26, 1767-1776   DOI   ScienceOn
4 Rosa, C. S., Gimenez, M. D. G., Rodriguez, M. T. S. and Puerta, V. R. (2007) Antihistaminic and antieicosanoid effects of oleanolic and ursolic acid fraction from Helichrysum picardii. Pharmazie 62, 459-462
5 Gao, X., Deeb, D., Jiang, H., Liu, Y., Dulchavsky, S. A. and Gautam, S. C. (2007) Synthetic triterpenoids inhibit growth and induce apoptosis in human glioblastoma and neuroblastoma cells through inhibition of prosurvival Akt, NF-$_{\kappa}B$ and Notch1 signaling. J. Neuro Onc. 84, 147-157   DOI
6 Lee, T. B. (2003) In coloured flora of Korea, Hyang Mun Sa, Seoul, Korea
7 Zhang, H. J., Tan, G. T., Hoang, V. D., Hung, N. V., Cung, N. M., Soejarto, D. D., Pezzuto, J. M. and Fong, H. H. S. (2003) Natural anti-HIV agents. Part IV. Anti-HIV constituents from Vatica cinerea. J. Nat. Prod. 66, 263-268   DOI   ScienceOn
8 Chinou, I., Liolios, C., Moreau, D. and Roussakis, C. (2007) Cytotoxic activity of origanum dictamnus. Fitoterapia 78, 342-344   DOI   ScienceOn
9 Ryu, S. N., Kang, S. S., Kim, J. S. and Ku, B. I. (2004) Quantitative analysis of eupatilin and jaceosidin in Artemisia herba. Korean J. Crop Sci. 49, 452-456
10 Pathak, A. K., Bhutani, M., Nair, A. S., Ahm, K. S., Chakraborty, A., Kadara, H., Guha, S., Sethi, G. and Aggarwal, B. B. (2007) Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Molecular Cancer Res. 5, 943-955   DOI   ScienceOn
11 Horiuchi, K., Shiota, S., Hatano, T., Yoshida, T., Kuroda, T. and Tsuchiya, T. (2007) Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycinresistant enterococci (VRE). Biol. Pharm. Bull. 30, 1147-1149   DOI   ScienceOn
12 Anjaneyulu, V., Harischandra, P, K., Ravi, K. and Connolly, J. D. (1985) Triterpenoids from Mangifera indica. Pytochem. 24, 2359-2367   DOI   ScienceOn
13 Singh, C. and Dev, S. (1977) Higher isoprenoids. V. Partial syntheses from cycloartenol, cyclolaudenol. Part 1. Mangiferolic acid, ambolic acid. Tetrahedron 33, 817-819   DOI   ScienceOn
14 Gabriela, M. C., Mariana, G. and Alicia, M. S. (1996) Cycloartane Derivatives from Tillandsia usneoides. J. Nat. Prod. 59, 343-347   DOI   ScienceOn
15 Reiko, T., Kazuaki, K., Shunji, K., Harukuni, T., Hoyoku, N. and Shunto, Ma. (2000) Bioactive steroids from the whole herb of Euphorbia chamaesyce. J. Nat. Prod. 63, 99-103   DOI   ScienceOn
16 Cho, B. B., Lee, H. J. and Bang, S. K. (2004) Studies on amino acid, sugar analysis and antioxidative effect of extracts from Artemisia sp. Korean J. Food Nutr. 17, 86-91   과학기술학회마을
17 Bang, M. H., Chung, H. G., Song, M. C., Yoo, J. S., Chung, S. A., Lee, D. Y., Kim, S. Y., Jeong, T. S., Lee, K. T., Choi, M. S. and Baek, N. I. (2006) Isolation of sterols from the aerial parts of Sajabalssuk (Artemisia herba). J. Korean Soc. Appl. Biol. Chem. 49, 140-144   과학기술학회마을
18 Ferreira, M. J., Pinto, F. C. and Ascenso, J. R. (2001) Cycloartane triterpenes from Euphorbia tuckeyana. Natural Product Research 15, 363-369   DOI   ScienceOn
19 Yin, M. C. and Chan, K. C. (2007) Nonenzymatic antioxidative and antiglycative effects of oleanolic acid and ursolic acid. J. Agric. Food Chem. 55, 7177-7181   DOI   ScienceOn
20 Khan, M. T. H., Khan, S. B. and Ather, A. (2006) Tyrosinase inhibitory cycloartane type triterpenoids from the methanol extract of the whole plant of Amberboa ramosa Jafri and their structure-activity relationship. Bioorg. Med. Chem. 14, 938-943   DOI   ScienceOn
21 Achiwa, Y., Hasegawa, K. and Udagawa, Y. (2007) Regulation of the phosphatidylinositol 3-Kinase-Akt and the mitogenactivated protein kinase pathways by ursolic acid in human endometrial cancer cells. Biosci. Biotechnol. Biochem. 71, 31-37   DOI   ScienceOn
22 Cho, Y. H. and Chiang, M. H. (2001) Essential oil composition and antibacterial activity of Artemisia capillaris, Artemisia argyi, and Artemisia princeps. Kor. J. Intl. Agri. 13, 313-320
23 Madureira, A. M., Spengler, G., Molnar, A., Varga, A., Molnar, J. A., Pedro, M. F. and Maria-Jose, U. (2004) Effect of cycloartanes on reversal of multidrug resistance and apoptosis induction on mouse lymphoma cells. Anticancer Res. 24, 859-864
24 Tatsuzaki, J., Taniguchi, M., Bastow, K. F., Nakagawa, G. K., Morris-Natschke, S. L., Itokawa, H., Baba, K. and Lee, K. H. (2007) Anti-tumor agents 255: Novel glycyrrhetinic aciddehydrozingerone conjugates as cytotoxic agents. Bioorganic Medi. Chem. 15, 6193-6199   DOI   ScienceOn
25 Ramchandra, P., Basheermiya, M., Krupadanam, G. L. D. and Srimannarayana, G. (1993) Wrightial, a new terpene from Wrightia tnictoria. J. Nat. Prod. 56, 1811-1812   DOI   ScienceOn
26 Simin, K., Franz, J. V. and Augest, W. F. (2007) Phytochemical investigation of Perovskia abrotanoides. Planta Med. 73, 77-83   DOI   ScienceOn