• 제목/요약/키워드: Actuator nonlinearities

검색결과 22건 처리시간 0.028초

Rudder 엑츄에이터 포화특성을 고려한 Anti-Windup 제어계의 설계 (Anti-Windup Controller Design for the Ship with the Rudder Saturation)

  • 김영복;최명수
    • 한국해양공학회지
    • /
    • 제16권4호
    • /
    • pp.61-69
    • /
    • 2002
  • In the actual control systems, there exist many kinds of restrictions or nonlinearities. However, due to the nonlinearities in actuators and sensors, the designed controller may not be applicable in some practical situations. One such nonlinearity is amplitude saturation in actuators. Although sometimes it may be ignored, in other cases failure to consider actuator saturation may severely degrade closed-loop system performance and even lead to instability. On the other hand, limiting the controller gain to avoid saturation sacrifices control effort and may lead to loss of performance. Consequently, in some cases, the actuator saturation must be explicitly taken into account to ensure desired performance. However, in this paper, an anti-windup control system design method is introduced to suppress the windup due to the amplitude saturation of the actuator. The proposed control system has very simple design process and guarantees the good control performance. The validity of the proposed control system will be shown by comparing with the results of a reported paper.

Identification and Robust $H_\infty$ Control of the Rotational/Translational Actuator System

  • Tavakoli Mahdi;Taghirad Hamid D.;Abrishamchian Mehdi
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.387-396
    • /
    • 2005
  • The Rotational/Translational Actuator (RTAC) benchmark problem considers a fourth-order dynamical system involving the nonlinear interaction of a translational oscillator and an eccentric rotational proof mass. This problem has been posed to investigate the utility of a rotational actuator for stabilizing translational motion. In order to experimentally implement any of the model-based controllers proposed in the literature, the values of model parameters are required which are generally difficult to determine rigorously. In this paper, an approach to the least-squares estimation of the parameters of a system is formulated and practically applied to the RTAC system. On the other hand, this paper shows how to model a nonlinear system as a linear uncertain system via nonparametric system identification, in order to provide the information required for linear robust $H_\infty$ control design. This method is also applied to the RTAC system, which demonstrates severe nonlinearities, due to the coupling from the rotational motion to the translational motion. Experimental results confirm that this approach can effectively condense the whole nonlinearities, uncertainties, and disturbances within the system into a favorable perturbation block.

입력 제한조건을 갖는 이동구간(Receding-Horizon) 예측제어 (Receding-Horizon Predictive Control with Input Constraints)

  • 신현창;김진환;허욱렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.777-780
    • /
    • 1995
  • Accounting for actuator nonlinearities in control loops has often been perceived as an implementation issue and usually excluded in the design of controllers. Nonlinearities treated in this paper are saturation, and they are modelled as an inequality constraint. The CRHPC(Constrained Receding Horizon Predictive Control) with inequality constraints algorithm is used to handle actuator rate and amplitude limits simultaneously or respectively. Optimum values of future control signals are obtained by quadratic programming. Simulated examples show that predictive control law with inequality constraints offers good performance as compared with input clipping.

  • PDF

Pickup Actuator의 구동특성 향상을 위한 구조, 자기 비선형성에 대한 고찰 (Study on Structural and Electromagnetic Nonlinearities for Improving Dynamic Characteristics of Pickup Actuator)

  • 이종진;김재은;홍삼열;고의석;민병훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.709-711
    • /
    • 2006
  • According as optical storage becomes high-density, numerical aperture increases. Therefore, the shift characteristic of moving parts in an actuator for optical pickup becomes a critical design factor because of decrease in the tilt margin. The tilt angle is maximized when the position of moving parts is in a diagonal direction within a moving range. This is determined by design of structure and magnetic circuit of an actuator. Previous analysis method only predicts linear characteristics of moving parts. However, the result of shift characteristics of the moving parts considering structural and magnetic circuit's nonlinearity following the every position simultaneously shows us more realistic result. Therefore, we present analysis method considering nonlinearity of moving parts' position through FEM package using coupled-field analysis. Then, we will suggest hereafter a design guide by comparing the above results with experimental ones.

  • PDF

차세대 리소그라피 시스템을 위한 압전구동기의 동적 해석 (Dynamic Analysis of the Piezo-Actuator for a New Generation Lithography System)

  • 박재학;정종철;허건수;정정주
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.472-477
    • /
    • 2003
  • A piezo-actuator is an important component for an E-beam lithography system. But it is very difficult to model its characteristics due to nonlinearities such as hysteresis and creep, to the input voltage. In this paper, one-axis micro stage with a piezo-actuator is modeled including the nonlinear properties. Hysteresis and creep are modeled as the first order differential equation and a time-dependent logarithmic function, respectively. The dynamic motion of the stage is also modeled as a mass-spring-damper system and the parameters are determined by utilizing the system identification technique. The simulation tool for a micro stage is constructed using the commercial software and its simulation results are compared with the experimental data.

Flutter Characteristics ofAircraft Wing Considering Control Surface and Actuator Dynamics with Friction Nonlinearity

  • Lee, Seung-Jun;Lee, In;Shin, Won-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.140-147
    • /
    • 2007
  • Whenever the hinge axis of aircraft wing rotates, its stiffness varies. Also, there are nonlinearities in the connection of the actuator and the hinge axis, and it is necessary to inspect the coupled effects between the actuator dynamics and the hinge nonlinearity. Nonlinear aeroelastic characteristics are investigated by using the iterative V-g method. Time domain analyses are also performed by using Karpel's minimum state approximation technique. The doublet hybrid method(DHM) is used to calculate the unsteady aerodynamic forces in subsonic regions. Structural nonlinearity located in the load links of the actuator is assumed to be friction. The friction nonlinearity of an actuator is identified by using the describing function technique. The nonlinear flutter analyses have shown that the flutter characteristics significantly depends on the structural nonlinearity as well as the dynamic stiffness of an actuator. Therefore, the dynamic stiffness of an actuator as well as the nonlinear effect of hinge axis are important factors to determine the flutter stability.

Modeling and Evaluation of Linear Oscillating Actuators

  • Chen, X.;Zhu, Z.Q.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.517-524
    • /
    • 2012
  • The operation of linear oscillating system is complicated, involving system nonlinearities of both actuator and load, and variations of driving frequency in order to track the mechanical resonance. In this paper, both analytical and state-variable modeling techniques are used to investigate the influence of actuator parameters, such as back-emf/thrust force coefficient and cogging force, on the performance of linear oscillating systems. Analytical derivations are validated by simulations, and good agreements are achieved. The findings of the paper can greatly facilitate the design and evaluation processes of permanent magnet linear actuators.

안티와인드업 기법을 가지는 PID 제어기의 EA 기반 동조 (EA-based Tuning of a PID Controller with an Anti-windup Scheme)

  • 진강규;박동진
    • 제어로봇시스템학회논문지
    • /
    • 제19권10호
    • /
    • pp.867-872
    • /
    • 2013
  • Many practical processes in industry have nonlinearities of some forms. One commonly encountered form is actuator saturation which can cause a detrimental effect known as integrator windup. Therefore, a strategy of attenuating the effects of integrator windup is required to guarantee the stability and performance of the overall control system. In this paper, optimal tuning of a PID (Proportional-Integral-Derivative) controller with an anti-windup scheme is presented to enhance the tracking performance of the PID control system in the presence of the actuator saturation. First, we investigate effective anti-windup schemes. Then, the parameters of both the PID controller and the anti-windup scheme are optimally tuned by an EA (Evolutionary Algorithm) such as the IAE (Integral of Absolute Error) is minimized. A set of simulation works on two high-order processes demonstrates the benefit of the proposed method.

백스테핑제어기를 이용한 전기유압액추에이터의 위치제어 (Position control of Electro hydrostatic actuator (EHA) using a modified back stepping controller)

  • 도안녹치남;윤종일;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권3호
    • /
    • pp.16-22
    • /
    • 2012
  • Nowadays, electro hydrostatic actuator (EHA) has shown great advantages over the conventional hydraulic actuators with valve control system. This paper presents a position control for an EHA using a modified back stepping controller. The controller is designed by combining a backstepping technique and adaptation laws via special Lyapunov functions. The control signal consists of an adaptive control signal to compensate for the nonlinearities and a simple robust structure to deal with a bounded disturbance. Experiments are carried out to investigate the effectiveness of the proposed controller.

백래쉬가 존재하는 비선형 불확실 시스템의 외란관측기를 이용한 제어 (Control of Nonlinear Uncertain System with Backlash by Disturbance Observer)

  • 홍성일;양진모
    • 한국군사과학기술학회지
    • /
    • 제11권2호
    • /
    • pp.125-135
    • /
    • 2008
  • Backlash in the actuator is one of the most important nonlinearities that limit the performance of speed and position control of mechanical systems. In this paper, we propose disturbance observers in order to estimate the effect of nonlinearities and cancel them subsequently. As a result the disturbance observers make the nonlinear system behave linearly. And finally we show that the disturbance observers guarantee the system robustness and the performance to reject the effect of backlash in the face of parameter uncertainties.