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Abstract – The operation of linear oscillating system is complicated, involving system 

nonlinearities of both actuator and load, and variations of driving frequency in order to track the 

mechanical resonance. In this paper, both analytical and state-variable modeling techniques are 

used to investigate the influence of actuator parameters, such as back-emf/thrust force coefficient 

and cogging force, on the performance of linear oscillating systems. Analytical derivations are 

validated by simulations, and good agreements are achieved. The findings of the paper can greatly 

facilitate the design and evaluation processes of permanent magnet linear actuators. 
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1. Introduction 

 

 The operation of linear oscillating system is relatively 

complicated, usually involving system nonlinearities of 

both actuator and load, and variations of driving frequency 

in order to track the mechanical resonance. Hence, the 

state-variable modeling technique in the time domain is 

extensively employed to study the dynamic and steady state 

characteristics of linear oscillating systems. Depending on 

the linearity of the specific system, such as the load force vs. 

displacement, spring stiffness vs. displacement, actuator 

thrust force vs. displacement and actuator thrust force vs. 

supply current etc, either the linear or nonlinear state-

variable modeling can be used. For simple analysis and 

control or cases where no severe nonlinearity is observed, 

the linear state-variable modeling can be readily adopted, 

for example in [1] and [2]. However, if nonlinearity is too 

significant to be neglected, the nonlinear state-variable 

modeling has to be used. By way of example, both [3] and 

[4] store the nonlinear finite element (FE) predicted 

actuator performance in terms of cogging force, force 

coefficient, inductance, etc as look-up tables, whilst the gas 

force characteristic of linear compressors can be modeled 

by an ideal pneumatic model, [5], [6]. Additionally, 

transient FE analyses can be incorporated into the 

simulation process, as done in [7] and [8]. Although it is 

very time-consuming, this is conducive to obtain a more 

accurate simulation compared to the real behavior of the 

oscillating system. 

Despite that there are many publications available 

discussing the state-variable modeling of linear oscillating 

systems, very few have studied the inherent influence 

caused by the nonlinear performance of linear oscillating 

actuators. Therefore, in this paper the influence of actuator 

performance, such as back-emf/thrust force coefficient and 

cogging forces, on oscillating systems are investigated 

analytically with particular reference to permanent magnet 

(PM) linear oscillating actuators (LOA). Then, simulations 

in MATLAB/Simulink are undertaken to validate the 

foregoing analytical models. 

 

2. State-variable Modeling of Linear Oscillating 

Systems 

 

Generally, the linear oscillating system can be divided 

into 2 coupled sub-systems, viz. the electromagnetic and 

mechanical systems. The electromagnetic system converts 

the electrical energy to mechanical energy via the magnetic 

fields in the LOA, the developed electromagnetic force 

being dependant on the supply current and the displacement 

of moving parts. Neglecting the cross-coupling effect and 

assuming linear magnetic circuits, the electromagnetic 

system of a 1-phase PM oscillating system can be modeled 

by the governing voltage equation formulated as: 

 

dx

d
v

dx

dL
iv

dt

di
LRiu m

  (1) 

 

where u and i are the voltage and current of power supply; 

R and L are the winding resistance and self-inductance; Ψ 
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and Ψm are the total winding flux-linkage and the flux-

linkage due to PM; x and v are the displacement and 

velocity of the moving parts. Based on (1), it can be seen 

that the reluctance force (FR) and excitation force (FE) are 

given by (2a) and (2b), whilst the total thrust force (Fact) 

produced by LOA is defined as (2c). 
 

dx

dL
iFR

2

2

1
  (2a) 

iK
dx

d
iF E

m
E 

  (2b) 

ERCact FFFF   (2c) 

 

where KE, namely the back-emf/force coefficient, is the 

derivative of the winding flux-linkage due to PM over the 

displacement, while the equation of cogging force (FC) not 

given due to its complex nature. 

Secondly, the mechanical state-variable equation, (3), can 

be employed to predict the mechanical behavior of linear 

oscillating systems. 

 

2

2

dt

xd
mvDxKFF eesLact   (3) 

 

where FL is the load force; me is the effective moving mass; 

Ks is the effective stiffness of the mechanical spring; De is 

the effective viscous damping coefficient of the oscillating 

system mainly due to the hysteresis loss of the spring and 

the bearing friction. As for the load force, there are several 

different fixtures available, typically the frictional load, 

linear generator load, linear compressor load, etc. However, 

the fundamental approach for the modeling of different load 

forces is identical, i.e. to convert the load forces into 

equivalent stiffness and damping components and substitute 

it with them in (3). 

It should be noted that although it is clearly the most 

straightforward and cost-effective way to drive linear 

oscillating systems by sinusoidal or rectangular voltage 

supplies, this is incapable of fully characterizing the system, 

because it ultimately relies on the induced current to 

determine the actuator performance. Whereas the current 

control method is equally applicable to linear oscillating 

systems, just as in rotary machines. Under the sinusoidal 

current control, the benefit of higher efficiency is observed 

in [9], whilst [6] finds that the instable jump problem of the 

oscillating amplitude, [10], is effectively eliminated. 

Therefore, the current control method will be used in this 

paper by commanding the supply current to be: 

)sin(0 tIi   (4) 

3. Influence of Actuator Parameters on 

Performance of Oscillating Systems 
 

Normally, in order to simplify the analysis only the 

excitation force with KE being constant irrespective of its 

variation versus displacements is considered, whilst the 

cogging force and reluctance force are both treated as zero. 

However, in the real working condition, all of them will 

introduce nonlinearities to the linear oscillating system and 

ultimately affect the system performance. Therefore, the 

influence of FE, FC and FR on the oscillating system is 

investigated in this section. 

 

3.1 Excitation Force 

 

In some topologies of LOAs, e.g. SPM with small slot 

openings, the cogging force FC can be negligible, whilst the 

reluctance force FR can be regarded as zero due to 

negligible change of winding self-inductance. Hence, the 

thrust force produced by LOA is only comprised of FE. As 

can be seen from (2b), FE is largely dependent on the back-

emf/force coefficient KE, which is also a function of the 

displacement x. Therefore, the influence of FE on the 

oscillation can be analyzed with regard to different KE-x 

characteristics. 

 

A. KE=Constant 

 

If KE remains constant irrespective of the variation of 

displacements, the mechanical state-variable equation is: 

 

2

2

0 )sin(
dt

xd
mvDxKtIK eesE   (5) 

 

where for simplification the pure damping load (FL=Del v) is 

considered; Del and D é are the load and total equivalent 

viscous damping coefficients. 

Due to the low-pass filter effect of the mechanical mass-

spring-damper system, the steady-state displacement is 

essentially sinusoidal as: 

 

)sin(   tAx  (6) 

 

where the oscillating amplitude A and the phase angle α 

between i and x are: 
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whilst based on (5) and multiply it by the velocity gives: 
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where Pdl, Pem and Po are the system internal damping loss, 

electromagnetic and output powers. Neglecting the actuator 

iron loss, the system efficiency ηsys is given by: 
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It is evident that ηsys achieves maximum (mechanical 

resonance) when: 
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B. KE being a linear function of displacement 

 

If the KE(x) characteristic exhibits profiles as shown in 

Fig. 1, the mechanical equation is: 

 

2

2

0 )sin(
dt

xd
mvDxKtxIK eesE   (9) 

 

Assuming the steady-state solution having the same 

formation as (6) and neglecting harmonics, (9) becomes: 

 

)cos(
2

1
)cos()sin()( 0

2  AIKtADtmKA Eees 
   

(10) 

 

It is can be seen that A has to be zero so that (10) can be 

satisfied, meaning this case of KE is incapable of producing 

stable sinusoidal oscillation. 

 
Fig. 1. Linear-slope KE(x) characteristics 

 
Fig. 2. Nonlinear KE(x) characteristics 

 
Fig. 3. An example of nonlinear FC(x) characteristic 

 

C. Nonlinear KE 

 

As can be seen from Case B, in order to produce 

oscillation the KE-x curve must not cross zero. However, the 

―roll-off‖ near the end of the rated stroke may exist in the 

KE-x characteristic, making it look like the profile shown in 

Fig. 2. In this case, the characteristic can be curve-fitted 

over the rated stroke, and the KE can be approximated as: 

 

6

6

4

4

2

20)( xKxKxKKxK EEEEE   (11) 

 

where AR is the rated stroke and −AR≤x≤AR. 

For simplicity KE(x)=KE0−KE2x
2
 (KE0, KE2>0) is used for 

analysis, and the mechanical equation becomes: 

 

2
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2

20 )sin()(
dt
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mvDxKtIxKK eesEE    (12) 

 

Assuming the steady-state solution having the same 

formation as (6) and neglecting harmonics, (12) becomes: 
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Comparing the left and right sides of (13), A and α can be 
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obtained by solving equation (14). 
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Due to the complication of (14), it is very difficult to derive 

a simple equation to determine the true resonant frequency. 

Alternatively, a quasi-resonant frequency can be regarded 

as: 

esqn mK /  

while the mover displacement and electromagnetic power at 

the quasi-resonant condition are: 
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It can be seen that compared to Case A with constant KE, 

the nonlinear KE has an adverse influence on the 

performance of the linear oscillating system, such as the 

reduction of oscillating amplitude, electromagnetic power 

and efficiency. 

 

3.2 Cogging Force 

 

In some LOA topologies with significant cogging force, 

the influence of cogging force on the oscillation has to be 

considered. In this part, its influence is investigated 

according to its distinctive gradient versus displacement, 

while the reluctance force FR and the load force FL are 0 

and Delv, respectively. 

 

A. FC=kc∙x 

 

If the FC-x profile is represented by an ideal linear curve, 

the mechanical equation can be simplified as: 

2

2

0 )()sin(
dt

xd
mvDxkKtIK eecsE   (15) 

As can be seen, when kc>0 the cogging force offsets the 

spring stiffness Ks, which is not recommended as the 

stiffness of the actual spring has to be increased in order to 

maintain the resonant operation at the supply frequency. 

However, if kc<0 the cogging force enhances the spring 

stiffness, which, in other words, is conducive to reduce the 

stiffness of the actual spring to maintain the resonant 

oscillation at the supply frequency. 

 

B. Nonlinear FC 

 

As can be seen from Case A, the FC-x characteristic with 

negative gradient is more beneficial to the oscillation. 

However, the ―roll-off‖ may be very common in the FC-x 

characteristic, Fig. 3. In this regard, the characteristic can 

be curve-fitted over the effective stroke range as: 
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where kc1>0 and −AR≤x≤AR. 

In order to simplify the analysis, FC(x)=−kc1+kc3x
3
 (kc1, 

kc3>0) is used, and the mechanical equation can be re-

written as: 
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where  K ś=Ks+kc1. 

 

The steady-state solution to (17) can be assumed as (6), 

while neglecting other harmonics (17) becomes: 
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Comparing the left and right sides, A and α can be obtained 

by solving (19): 

The electromagnetic power is give by: 

22

2

2
2

32

2

0

2

2

1

4

32
AD

D

Ak
mK

IKD
P e

e

c
es

Ee
em 































(20)

 

As can be seen, Pem will reach maximum when: 
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Thus, the resonant frequency ωn and oscillating amplitude 

An are given by: 
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while αn is 90°, the mover displacement and 

electromagnetic power are: 
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In summary, this case with nonlinear FC affects the 

resonant frequency and oscillating amplitude, whereas the 

phase angle between i and x, maximum electromagnetic 

power at resonance remain unchanged compared to that 

without FC. 

Furthermore, if the FC-x characteristic is: 
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It can be seen that the cogging force with nonlinear FC-x 

characteristic is still capable of enhancing the effective 

spring stiffness, although its contribution can be 

significantly compromised by kc3 compared to Case A with 

kc<0. 
 

4. Simulations 

 

A tubular moving-magnet actuator based on [5], the 

schematic being shown in Fig.4, is utilized in this section as 

the test LOA for both state-variable modeling and 

numerical simulation. 

 

 
Fig.4. Schematic of a tubular moving-magnet actuator 

 

Table 1. Main parameters of the actuator in Fig. 4 

R, Ω 7 L, mH 5.0 

KE, N/A 4.2 me, kg 0.039 

Ks, N/m 1884 De, s/m 3 

AR, mm 4   

 

4.1 Back-emf/force coefficient 

 

Firstly, if the nonlinearity of back-emf/force coefficient is 

ignored, the main parameters of the actuator can be 

summarized in Table 2.1. Using Simulink, the LOA model 

is implemented as shown in Fig. 5, in which the current 

source is pre-set with fixed magnitude of 0.6 A and variable 

frequency. Fig. 6 shows the analytically calculated and 

simulated results of A, α, Pem and η on the test LOA, 

indicating the resonant frequency being ~35 Hz and the 

maximum efficiency being ~45%. 

 

Fig. 5. Simulink block diagram for LOA system 

 

 
(a) Amplitude of oscillation 

 
(b) i-x phase shift angle 

 

(c) Electromagnetic power 

 

(d) Efficiency 

Fig. 6. Comparison of analytical and simulated results 

 

Secondly, to account for the nonlinearity of back-

emf/force coefficient, the test LOA is used for the 

comparison of analytical and simulation results, whose 

main parameters are listed in Table 2. Fig. 7 shows the LOA 

model implemented in Simulink, in which the current 

source is pre-set with fixed magnitude of 0.6 A but variable 

frequency, whilst Fig. 8 compares the analytically predicted 
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and simulated results of A, Pem and η on the test LOA, 

indicating the resonant frequency still remaining at ~35 Hz 

and the maximum efficiency being dropped to ~43.5% 

compared to the previous ~45% in the previous case, Fig. 9. 
 
Table 2. Main parameters of the test actuator 

R, Ω 7 L, mH 5.0 

KE0, N/A 4.2 KE2, N/(Am2) 52500 

Ks, N/m 1884 me, kg 0.039 

AR, mm 4 De, s/m 3 
 

 

Fig. 7. Simulink block diagram for LOA system 
 

 
(a) Amplitude of oscillation 

 
(b) Electromagnetic power 

 

(c) Efficiency 

Fig. 8. Comparison of analytical and simulated results 

 

Fig. 9. Efficiency comparison of constant and nonlinear KE 

4.2 Cogging force 

 

Table 3. Main parameters of the test actuator 

R, Ω 7 L, mH 5.0 

KE, N/A 4.2 kc, N/m 1750 

AR, mm 4 me, kg 0.039 

Ks, N/m 1884 De, Ns/m 3 
 

 

Fig. 10. Simulink block diagram for LOA system 
 

 
(a) Amplitude of oscillation 

 
(b) i-x phase shift angle 

 
(c) Electromagnetic power 

 

(d) Efficiency 

Fig. 11. Comparison of analytical and simulated results 
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Firstly, the comparison of analytical and simulation 

results are undertaken based on the Simulink model shown 

in Fig. 10, in which the current source is pre-set with fixed 

magnitude of 0.83 A but variable frequency, while other 

major parameters are listed in Table 3. Fig. 11 is the 

comparisons of the analytically predicted and simulated 

results of A, α, Pem and η on the test LOA, showing the 

resonant frequency being shifted to ~48.6 Hz and the 

maximum efficiency remaining at ~45.6% the same as in 

Fig. 6. 

Secondly, if nonlinear cogging force is considered, the 

simulation is undertaken based on the Simulink model 

shown in Fig. 12, in which the current source is pre-set with 

fixed magnitude of 0.83 A but with variable frequency, 

while other major parameters can be referred to as in Table 

4. Fig. 13 compares the analytically predicted and 

simulated results of A, α, Pem and η on the test LOA. As can 

be seen, relatively good agreements are achieved between 

analytical and simulated results, while the discontinuity of 

responses, often referred to as the jump phenomenon, near 

resonance is observed in simulations. The predicted 

resonant frequency by analytical analyses is ~50.03 Hz with 

Pem and η being ~2.025 W and ~45.65%, respectively, 

whilst the resonant frequency by simulation is identified as 

~50.6 Hz (relative difference<1.3%), but with essentially 

the same maximum Pem and η (being ~2.019 W and ~45.58% 

respectively) as the analytical data. 

 

Table 4. Main parameters of the test actuator 

R, Ω 7 L, mH 5.0 

KE, N/A 4.2 AR, mm 4 

kc1, N/m 3859 kc3, N/m
3
 1.843×10

8
 

me, kg 0.039 De, Ns/m 3 

Ks, N/m 1884   
 

 

 Fig. 12. Simulink block diagram for LOA system 

  

 
 

(a) Amplitude of oscillat ion 

 
(b) i-x phase shift angle 

 
(c) Electromagnetic power 

 

(d) Efficiency 

Fig. 13. Comparison of analytical and simulated results 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25 30 35 40 45 50 55 60 65

Frequency, Hz

A
, 

m
m

Analytical

Simulation

0

20

40

60

80

100

120

140

5 10 15 20 25 30 35 40 45 50 55 60 65

Frequency, Hz

α
, 

d
e
g

.

Analytical

Simulation

0

0.5

1

1.5

2

2.5

5 10 15 20 25 30 35 40 45 50 55 60 65

Frequency, Hz

P
e
m

, 
W

Analytical

Simulation

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50 55 60 65

Frequency, Hz

η
, 

%

Analytical

Simulation



524                                        X. Chen and Z. Q. Zhu 

 

 

 524 

5. Conclusion 

 

In this paper, both analytical and state-variable modeling 

techniques are used to investigate the influence of actuator 

parameters, such as back-emf/thrust force coefficient, 

cogging forces, on the performance of oscillating systems. 

Then the analytical derivations are validated by simulations, 

and good agreements are achieved. The conclusions of the 

paper potentially are capable of facilitating the design and 

evaluation of various PM linear actuators. 
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