• Title/Summary/Keyword: Actual vessel.

Search Result 213, Processing Time 0.023 seconds

Analysis of fluctuations in ex-core neutron detector signal in Krško NPP during an earthquake

  • Tanja Goricanec;Andrej Kavcic;Marjan Kromar;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.575-600
    • /
    • 2024
  • During an earthquake on December 29th 2020, the Krško NPP automatically shutdown due to the trigger of the negative neutron flux rate signal on the power range nuclear instrumentation. From the time course of the detector signal, it can be concluded that the fluctuation in the detector signal may have been caused by the mechanical movement of the ex-core neutron detectors or the pressure vessel components rather than the actual change in reactor power. The objective of the analysis was to evaluate the sensitivity of the neutron flux at the ex-core detector position, if the detector is moved in the radial or axial direction. In addition, the effect of the core barrel movement and core inside the baffle movement in the radial direction were analysed. The analysis is complemented by the calculation of the thermal and total neutron flux gradient in radial, axial and azimuthal directions. The Monte Carlo particle transport code MCNP was used to study the changes in the response of the ex-core detector for the above-mentioned scenarios. Power and intermediate-range detectors were analysed separately, because they are designed differently, positioned at different locations, and have different response characteristics. It was found that the movement of the power range ex-core detector has a negligible effect on the value of the thermal neutron flux in the active part of the detector. However, the radial movement of the intermediate-range detector by 5 cm results in 7%-8% change in the thermal neutron flux in the active part of the intermediate-range detector. The analysis continued with an evaluation of the effects of moving the entire core barrel on the ex-core detector response. It was estimated that the 2 mm core barrel radial oscillation results in ~4% deviation in the power and intermediate-range detector signal. The movement of the reactor core inside baffle can contribute ~6% deviation in the ex-core neutron detector signal. The analysis showed that the mechanical movement of ex-core neutron detectors cannot explain the fluctuations in the ex-core detector signal. However, combined core barrel and reactor core inside baffle oscillations could be a probable reason for the observed fluctuations in the ex-core detector signal during an earthquake.

A Methodology of Ship Detection Using High-Resolution Satellite Optical Image (고해상도 광학 인공위성 영상을 활용한 선박탐지 방법)

  • Park, Jae-Jin;Oh, Sangwoo;Park, Kyung-Ae;Lee, Min-Sun;Jang, Jae-Cheol;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • As the international trade increases, vessel traffics around the Korean Peninsula are also increasing. Maritime accidents hence take place more frequently in the southern coast of Korea where many big and small ports are located. Accidents involving ship collision and sinking result in a substantial human and material damage as well as the marine environmental pollution. Therefore, it is necessary to locate the ships quickly when such accidents occur. In this study, we suggest a new ship detection index by comparing and analyzing the reflectivity of each channel of the Korea MultiPurpose SATellite-2 (KOMPSAT-2) images of the area around the Gwangyang Bay. A threshold value of 0.1 is set based on a histogram analysis, and all vessels are detected when compared with RGB composite images. After selecting a relatively large ship as a representative sample, the distribution of spatial reflectivity around the ship is studied. Uniform shadows are detected on the northwest side of the vessel. This indicates that the sun is in the southeast, the azimuth of the actual satellite image is $144.80^{\circ}$, and the azimuth angle of the sun can be estimated using the shadow position. The reflectivity of the shadows is 0.005 lower than the surrounding sea and ship. The shadow height varies with the position of the bow and the stern, perhaps due to the relative heights of the ship deck and the structure. The results of this study can help search technology for missing vessels using optical satellite images in the event of a marine accident around the Korean Peninsula.

Analysis of the basic items and safety accidents occurring during the fishing operation in coastal improved stow net fishery by the questionnaire survey (설문조사를 통한 연안개량안강망어업의 기본 사항 및 어로 작업 중 발생하는 안전사고 분석)

  • CHANG, Ho-Young;KIM, Min-Son;HWANG, Bo-Kyu;OH, Jong Chul
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.1
    • /
    • pp.57-68
    • /
    • 2021
  • In order to collect basic data for the improvement of fishing systems in coastal improved stow net fishery, a questionnaire survey and on-site hearing were conducted from May 10 to June 11, 2019 on the basic items of coastal improved stow net fishery and safety accidents that occurred during fishing operation. The questionnaire for the survey on the actual conditions of coastal improved stow net fishery consisted of a survey on basic matters (six questions) and a questionnaire (six questions) on safety accidents occurring during fishing operation. The results of the survey on basic items were analyzed by region (Incheon, Seocheon, Gunsan and Mokpo), by the captain's age (less than 50 years of age, 50 to 60 years and more than 60 years of age), by the captain's career (less than 20 years, 20 to 30 years, 30 to 40 years and more than 40 years) and by the age of fishing vessel (less than 10 years, 10 to 20 years and more than 20 years). According to the survey on basic items of coastal improved stow net fishery such as the captain's age, the captain's career, the age of fishing vessel, the fishing nets in use, the crews on board and the operation days per voyage by region, the average captain's age was 55.7 years, the average captain's career was 20.5 years, the average age of fishing vessels was 9.0 years, the average numbers of nets used by fishing boats was 14.0 sets, the average numbers of crew on board a fishing boat was 4.4 persons and the average numbers of operation days per voyage was 4.9 days (p < 0.05). As a result of the survey on safety factors during fishing operations, such as experience of ship accidents, major causes of ship accidents experienced, causes of ship accidents (first priority), experience of human accidents, major causes of human accidents, and causes of human accidents (first priority), more than 96% of the respondents experienced ship accidents including collisions with other vessels or fishing gear during fishing operations. The most significant cause of the accident was the other's fishing gear installed in the fishing grounds. The first possible causes of ship accidents during fishing operations were found to be other fishing gear installed in fishing grounds, steering or engine failure, and inability to avoid accidents during casting and hauling nets. The survey of the experience of human accidents, such as injuries or sea falls, showed that more than 90% of the respondents experienced human accidents during fishing operations. The most important cause of accidents experienced during fishing operations was stucked in a fishing gear during casting and hauling nets. The first important causes of accidents during fishing operations were movement of the fishing gear during casting and hauling nets, damage of the fishing gear such as rope cutting. The results are expected to be provided as a basic data to prevent safety accidents occurring during fishing operation and improve the fishing system in the coastal improved stow net fishery.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

The Study of Aliasing and Incidence Angle Dependence of Doppler Image on Humeral Artery (상완동맥 Doppler 영상의 입사각 의존성과 Aliasing에 관한 연구)

  • Kim, Sang-Jin;Ji, Tae-Jeong
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.379-387
    • /
    • 2008
  • Among methods to eliminate aliasing effects, the method of increasing velocity scale gradually eliminated the phenomenon in which the direction of the blood flow appeared in reverse. It was done by increasing the velocity scale while maintaining other parameters in the same state. The method of setting the Doppler angle to $0^{\circ}$ did not show significant changes in the wave pattern of the spectrum according to the angle. In actual ultrasonography tests, more accurate tests are expected to be carried out by applying variations to the velocity scale under the considerations of speed, accuracy, and convenience of the examination. The results showed that blood flow velocity increases exponentially according to the Doppler Angle. When the angle goes over $70^{\circ}$, the velocity value increases to an unmeasurable state. This indicates that in blood flow velocity measurements, the blood flow velocity is very dependent on the Doppler Angle. It also shows that the error increases when the incidence angle to the direction of blood flow exceeds $60^{\circ}$, and when the angle exceeds $70^{\circ}$, the error becomes even greater. In addition, he experiment results showed that an angle below $60^{\circ}$ is appropriate and for blood flow velocity measurements in extremity vessels, the most appropriate Doppler Angle is from $45^{\circ}$ to $60^{\circ}$.

  • PDF

Effect of Construction Joint on Leakage Resistance of Gas in Reinforced Concrete Pressure Vessels (철근콘크리트 압력용기에서 시공이음이 가스의 누설저항에 미치는 영향)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • In the nuclear power plant, the steel or polymer liner plates are adopted to prohibit the inner concrete surface from contacting with gas or liquid materials. If there is an accident, the plate may be damaged, and, in this case, concrete shall have the final responsibility to safety requirements. In this paper, an experimental research was carried out to investigate the effects of construction joint and wet and loading conditions on the permeability of concrete. The test results showed that, under a construction joint in the wet condition, leakage of gas pressure has been started from $1kg/cm^2$. However, when there are no construction joints, it is initiated from $2kg/cm^2$. In addition, under the air dried and unloading condition, regardless of with or without the presence of the construction joint, since the gas passage that exist in concrete is constant, leakage has a constant tendency to increase. Finally, under the loading condition, as described in Reference 1, since leakage is inversely proportional to the thickness of the wall, and, considering the wall thickness of the actual plant, it is found that there will not be no problem in the sealing of the gas.

ABOUT POBAEK-CHEOK IN THE TIME OF THE YI-DYNASTY (조선시대(朝鮮時代)의 포백척(布帛尺)에 관한 연구(硏究))

  • Lee, Eun-Kyung
    • Journal of the Korean Society of Costume
    • /
    • v.16
    • /
    • pp.111-123
    • /
    • 1991
  • We suppose that Poback-cheok appeared with wearing clothes in the ancient times. At first, man used body as a scale, and it is gradually diversified with social development. It is clear that also in the time of Shilla-Dynasty, the United Shilla-Dynasty and the Goryeo-Dynasty, the system of degree existed in historical relation to that of China. But we don't know it's real length, because there is no recording until the beginning of the Yi-Dynasty. The first recording about Poback-cheok appeared in the time of the King Sejong. Hwangjong-Cheok which is a original vessel of the degree system appears in the 7th years of the King Sejong. In the 12th years of the King Sejong, Ju-cheok, Youngjo-cheok and Joyegi-cheok appeared. In the 13th years of the King Sejong, Poback-cheok appeared as a new changed one. At that time, the length of Poback-cheok is recorded as 44.75cm in chapter of Oye and Jonsoo Pobaek-cheok is recorded as 46.73cm in Jeonjesangjeongso's picture, and it is recorded as 46.80cm in the Kyunggugdaijeon. The scale system is put in good order in the time of King Sejong. But it is confused by the war of 1636 after King Seonjo period. In the 26 th year of King Youngjo, it is reappeared as one of the King Sejong, and it is fixed as 46.80cm. The length is used until the proclamation in the 6th years of the Kwangmu(1902), and then the length of Pobaek-cheok is changed as 48.48 cm, that is measured by a Gok-cheok. After that time, the scale system is very confused during the introduction of new civilization and the Korean-Japanes Unit. So it is used longer or shorter(that is, 49.24cm or 48.91cm). And the metric system is introduced by Japanes in 1926, and it reached the present time. According to use, the actual thing with is used in the end of the Yi-Dynasty is various from 30cm to 70cm. And according to material and craft-man, it can be devided into Hwa-gag scale, Najeon-blacklacquer-scale, bamboo-scale, wooden-scale. The way of expression of measure is always followed by the decimal system. The other half part, except the part of expression of graduation, is put on decorate with a pattern. Also we can see the idea of living on this point.

  • PDF

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.515-522
    • /
    • 2005
  • The ship plating is generally subjected to. combined in-plane load and lateral pressure loads, In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to. water pressure and cargo. These load components are nat always applied simultaneously, but mare than one can normally exist and interact. Hence, far mare rational and safe design of ship structures, it is af crucial importance to. better understand the interaction relationship af the buckling and ultimate strength far ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except far the impact load due to. slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to. the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Jun-Kyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull ginder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are inverstigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF