• Title/Summary/Keyword: Actual Evapotranspiration

Search Result 107, Processing Time 0.025 seconds

Estimation Method of Evapotranspiration through Vegetation Monitoring over Wide Area (식생해석을 통한 광역증발산량 추정 방법의 개발)

  • 신사철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.1
    • /
    • pp.81-88
    • /
    • 1996
  • Remote sensing technique is a probable means to estimate distribution of actual evapotranspiration over wide area in connection with regional characteristics of vegetation and landuse. Factors controlling evapotranspiration from ground are air temperature, humidity, wind, radiation, soil moisture and so on. Not only the vegetation influences directly the evapotranspiration, but also these factors strongly influnce the vegetation at the area. Therefore we can expect high correlation between the evapotranspiration and the vegetation. To grasp the state of vegetation at any point, NDVI calculated from NOAA/AVHRR data is utilized. It can be considered that evapotranspiration at a forest region is linearly proportional to the NDVI. Here, a model which adopts a direct method to estimate actual evapotranspiration is developed by using the relationship between NDVI and evapotranspiration. This method makes possible to estimate evapotranspiration of Korean Peninsula including North Korea where enough meteorological and hydrological data are unavailable.

  • PDF

유역 물수지조사를 위한 수문기상학적인 기초자료분석

  • 이광호
    • Water for future
    • /
    • v.5 no.2
    • /
    • pp.44-48
    • /
    • 1972
  • This article includes hydrometeorological analysis of evapotranspiration and precipitation, which are used available basic data for a certain basin water budget. Evapotranspiration on water surface, bare soil and rice fields is directly measured by Thornthwaite's type Lysimeter and on water surface and vegetables computed using the Penman's equation. Areal precipitation is analized through the Thiessen method and arithmatic mean method. It is interested fact that the correlation coefficient for Class A Pan's evaporation vs. the actual evapotranspiration is the highest value among the coefficients for different type evaporimeter and Penman equation, and evaporation ratio on rice field's evapotranspiration vs. Class A Pan's evaporation is 1. 5-2. 3.

  • PDF

Characterization of Local Evapotranspiration Based on the Seasonal and Hydrometeorological Conditions (계절과 수문기상학적 조건에 따른 지역 증발산의 특성화)

  • Rim, Chang-Soo;Lee, Jong-Tae;Yoon, Sei-Uei
    • Water for future
    • /
    • v.29 no.2
    • /
    • pp.235-247
    • /
    • 1996
  • Meteorological and soil water content data measured from semiarid watersheds of Lucky Hills and Kendall during the summer rainy and winter periods were used to study the interrelationships between the controlling variables of the evapotranspiration, and to evaluate the effects of variables on daily actual evapotranspiration (ET) estimation. Simple and multiple linear regression (MLR) analyses were employed to evaluate the order of importance of the meteorological and soil water factors involved. The information gained was used for MLR model development. Theavailable energy and vapor pressure deficit were found to be the important variables to estimate actual ET (AET) for both periods and at both watersheds. Therefore, the important variables of evapotranspiration process in these semiarid watersheds appear to be simply the components of energy term in available energy and aerodynamic term in vapor pressure deficit of Penman potential evapotranspiration (PET) equation.

  • PDF

Irrigation Scheduling Model for Dry Crops (밭작물(作物)의 계획관개(計劃灌漑) 모형(模型) - 토양수분(土壤水分) 변화(變化)를 중심(中心)으로 -)

  • Ahn, Byoung Gi;Kim, Tai Cheol;Cheoung, Sang In
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.68-80
    • /
    • 1987
  • This study was carried out to investigate the evapotranspiration and variations of soil moisture contents for soybeans. The relationship between actual evapotranspiration obtained by the water balance equation and estimated evapotranspiration obtained by the soil moisture model was analyzed. The results obtained were summarized as follows; 1. The total amount of actual evapotranspiration of soybeans during growing season was 405.7mm. The total amount of reference crop evapotranspiration of soybeans that was estimated by Pan evaporation and Hargreaves method were 547.8 mm and 586.8 mm, respectively. Crop coefficient during growing season were shown on Table 1. 2. Measured actual evapotranspiration of soybean during growing season was 405.7 mm and estimated actual evapotranspiration by pan evaporation and Hargreaves method were 424.7 mm, and 426.1mm, r3 respectively. 3. The variations of soil moisture content for soybeans were high at 10cm layer, as compared with those at 30cm and 50cm layers. Because discrepancy between the variations of soil moisture content predicted by model and observed by soil moisture meter was still great, it is required to study the consumptive types of soil moisture at each root depth.

  • PDF

Estimation of Actual Evapotranspiration using Multi-Satellite Data over Korea Peninsula (다중 위성 자료를 이용한 한반도에서의 실제 증발산량 산출에 관한 연구)

  • Lee, Min-Ji;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.145-151
    • /
    • 2011
  • Evapotranspiration (ET) is an important process acrossa wide range of disciplines, including ecology, hydrology and meteorology.In this study, daily actual evapotranspiration (ETa) is based energy balance equation and considering high surface roughness length to estimate. This study was used variety of satellite data and ground observation data in Korea Peninsula from 1 January to 31 December 2009. In this study, sensible heat flux is one of the important parameters of ETa. Measurements of sensible heat flux are, however, complex and can't be easily obtained. So this study was used an empirical coefficient B to simplify estimate of sensible heat flux. The coefficient B in the ETa model requires a careful definition of aerodynamic resistance. So this study proposed ETa model considering aerodynamic resistance and high surface roughness length. This study was conducted validation in comparison of the proposed daily ETa results with Priestley-Taylor ETp.

Development of Evapotranspiration Models and Domestic Research (증발산 모형의 발전 및 국내 연구)

  • Sungshin Yoon;Chulsang Yoo
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.48-63
    • /
    • 2023
  • Research on the method of calculating and estimating evapotranspiration has been steadily conducted. Various models have been developed according to different backgrounds, and each of these models has different characteristics such as required input data. Therefore, this study introduces the theoretical background and characteristics of evapotranspiration models and the development process of domestic research on evapotranspiration by era. First, the origin and theoretical background of the potential evapotranspiration models are summarized in addition to classifying them by input data. Then, the characteristics of the actual evapotranspiration estimation methods are summarized. Additionally, methods based on observation and methods using the rainfall-runoff models are summarized.

Climatic Water Balance Analysis Using NOAA/AVHRR Satellite Images (NOAA/AVHRR 위성영상을 이용한 기후학적 물수지 분석)

  • Kwon, Hyung-Joong;Shin, Sha-Chul;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.3-9
    • /
    • 2005
  • The purpose of this study was to analyze the climatic water balance of the Korean peninsula using meteorological data and the evapotranspiration (ET) derived from NOAA/AVHRR, Quantifying water balance components is important to understand the basic hydrology, In this study, a simple method to estimate actual ET was proposed based on a regression approach between NDVI and Morton's actual ET using NOAA/AVHRR data, The Mortons actual ET for land surface conditions was evaluated using a daily meteorological data from 77 weather stations, and the monthly averaged Morton's ETs for each land cover was compared with the monthly NDVIs during the year 2001. According to the climatic water balance analysis, water deficit and surplus distributed maps were created from spatial rainfall, soil moisture, and actual and potential ETs map, The results clearly showed that the temporal and spatial characteristics of dryness and wetness may be detected and mapped based on the wetness index.

Assessment of Reference Evapotranspiration Equations for Missing and Estimated Weather Data (기상자료의 결측과 산정에 따른 기준작물 증발산량 공식의 비교 평가)

  • Yoon, Pu Reun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.15-25
    • /
    • 2018
  • Estimating the reference evapotranspiration is an important factor to consider in irrigation system design and agricultural water use. However, there is a limitation in using the FAO Penman-Monteith (FAO P-M) equation, which requires various meteorological data. The purpose of this study is to compare three reference evapotranspiration (ETo) equations in the case of meteorological data missing for 11 study weather stations. Firstly, the FAO P-M equation is used for reference potential evapotranspiration estimation with the actual solar radiation data $R_n$ and the actual vapor pressure $e_a$. Then, in the case of $R_n$, and $e_a$ are missed, the reference evapotranspirations applying FAO P-M, Priestley-Taylor (P-T), Hargreaves (HG) equation were calculated using other meteorological factors. Secondly, MAE, RMSE, $R^2$ were calculated to compare ETo relationship from the ETo equations. From the results, ETo with Hargreaves equation in coastal areas and the Priestley-Taylor equation in the inland areas showed relatively high correlation with FAO P-M when $e_a$ data is missed. In the case of $R_n$ data is missed or two weather data, $e_a$, and $R_n$ data are all missed, $R^2$ value in Priestley-Taylor equation was highest in coastal areas, and $R^2$ values in Hargreaves equation were the high values for 7 inland areas. The results of sensitivity analysis showed that net radiation was the most sensitive for P-T and HG equation, and for FAO P-M, the most sensitive factor was net radiation and relative humidity, air temperature and wind speed were follows. Therefore, in considering of the accessibility to the coast, the types of the missing wether data, and the correlation and the magnitude of error, the reference evapotranspiration equations would be selected in sense of different conditions.

Estimation of Areal Evapotranspiration Using NDVI and Temperature Data (NDVI와 기온자료를 이용한 광역증발산량의 추정)

  • Shin, Sha-Chul;An, Tae-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.79-89
    • /
    • 2004
  • Remote sensing technique is a probable means to estimate distribution of actual evapotranspiration in connection with regional characteristics of vegetation and landuse. The factors controlling evapotranspiration from ground surface are air temperature, humidity, wind, radiation, soil moisture and so on. Not only the vegetation influences directly the evapotranspiration, but also these factors strongly influences the vegetation growth at the area. Therefore, it can be expected that evapotranspiration is highly correlated to vegetation condition. The normalized difference vegetation index (NDVI) showed excellent ability to get the vegetation information. The NDVI is obtained using NOAA/AVHRR have been studied as a tool for vegetation monitoring. In this paper, a simple method to estimate actual avapotranspiration is proposed based on vegetation and meteorological data.

  • PDF

Merging technique for evapotranspiration based on in-situ, satellite, and reanalysis data using modifed KGE fusion method (수정된 KGE 방법을 활용한 지점, 인공위성, 재분석 자료 기반 증발산 융합 기술)

  • Baik, Jongjin;Jeong, Jaehwan;Park, Jongmin;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The modified Kling-Gupta efficiency fusion method to merge actual evapotranspiration was proposed and compared with the simple Taylor skill's score method using Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MODIS Global Evapotranspiration Project (MOD16), and the flux tower on three different land cover types over the Korean peninsula and China. In the results of the weights estimated from two actual evapotranspiration merging techniques (i.e., STS and KGF), the weights of reanalysis data (i.e, GLDAS and GLEAM) in cropland and grassland showed similar performance, while the results of weights are different according to the merging techniques in forest. Both two merging techniques showed better results than original dataset in grassland and forest. However, there were no improvement in cropland compared to the other land cover types. The results of the KGF method slightly improved compared to those of the STS in grassland and forest.