• Title/Summary/Keyword: Activity repeatability

Search Result 15, Processing Time 0.025 seconds

A Study on the extraction of activity obstacles to improve self-driving efficiency (자율주행 효율성 향상을 위한 활동성 장애물 추출에 관한 연구)

  • Park, Chang min
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.71-78
    • /
    • 2021
  • Self-driving vehicles are increasing as new alternatives to solving problems such as human safety, environment and aging. And such technology development has a great ripple effect on other industries. However, various problems are occurring. The number of casualties caused by self-driving is increasing. Although the collision of fixed obstacles is somewhat decreasing, on the contrary, the technology by active obstacles is still insignificant. Therefore, in this study, in order to solve the core problem of self-driving vehicles, we propose a method of extracting active obstacles on the road. First, a center scene is extracted from a continuous image. In addition, it was proposed to extract activity obstacles using activity size and activity repeatability information from objects included in the center scene. The center scene is calculated using region segmentation and merging. Based on these results, the size of the frequency for each pixel in the region was calculated and the size of the activity of the obstacle was calculated using information that frequently appears in activity. Compared to the results extracted directly by humans, the extraction accuracy was somewhat lower, but satisfactory results were obtained. Therefore, it is believed that the proposed method will contribute to solving the problems of self-driving and reducing human accidents.

Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Photoelectrocatalytic decolorization of methlene blue (MB) in the presence of two types of carbon nanotube/titania and yttrium-treated carbon nanotube/titania electrodes in aqueous solutions were studied under visible light. The prepared composite electrodes were characterized by X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis, and photoelectrocatalytic activity. The photoelectrocatalytic performances of the supported catalysts were evaluated for the decolorization of MB solution under visible light irradiation. The results showed that yttrium incorporation enhanced the decolorization rate of MB. It was found that the photoelectrocatalytic degradation of a MB solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, the enhancement of yttrium and a function of the applied potential. The repeatability of photocatalytic activity was also tested. The presence of yttrium enhanced the hydrophillicity of yttrium-carbon nanotubes/titania electrode because more OH groups can be adsorbed on the surface.

Microwave Assisted Synthesis of SnS Decorated Graphene Nanocomposite with Efficient Visible-Light-Driven Photocatalytic Applications

  • Wang, Jun-Hui;Zeng, Yi-Kai;Gu, Hao;Zhu, Lei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.641-649
    • /
    • 2020
  • A facile microwave assisted solvothermal process is designed for fabricating SnS nanoparticles decorated on graphene nanosheet, which used as visible light driven photocatalyst. Some typical characterization techniques such as XRD, FT-IR, SEM with EDX analysis, and TEM and BET analysis are used to analyse the physical characteristics of as-prepared samples. Spherical SnS nanoparticles are uniformly dispersed on the surface of graphene nanosheet due to ammonia, which can prevent the aggregation of graphene oxide. Meanwhile, microwave radiation provides fast energy that promotes the formation of spherical SnS nanoparticles within a short time. The visible light photocatalytic activity of as-prepared SnS-GR nanocomposites is analysed through photodegradation efficiency of methylene blue with high concentration. According to the higher photocatalytic property, the as-prepared SnS-GR nanocomposites can be expected to be an efficient visible light driven photocatalyst. After five cycles for decolorization, the rate decreases from 87 % to 78 % (about 9 %). It is obvious that the photocatalytic activity of SnS-GR nanocomposite has good repeatability.

Combustion Property Analysis of Propellant using Standard Motor (표준모타를 이용한 추진제 연소특성 분석)

  • 박의용;최성한;황종선
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.181-184
    • /
    • 2003
  • We manufactured standard motor to measure burning rate of propellant, used to estimate burning rate of main motor by static fired testing. We installed static fired testing facility and developed standard motor more lightly to accomplish the test. As a result of the tests, we could get the burning rate closer than acquired by existing method to the main motor's on. And we confirmed repeatability by many times of tests. We will use this method positively for R&D and quality assurance activity of mass production.

  • PDF

Electro-Catalytic Behavior of an Antiarrhythmic Drug, Procainamide and its Electro-Analytical Applications

  • Abbar, Jyothi C.;Meti, Manjunath D.;Nandibewoor, Sharanappa T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.292-300
    • /
    • 2018
  • The electrocatalytic oxidative behavior of an antiarrhythmic drug, procainamide hydrochloride (PAH) at the gold electrode surface has been examined using different voltammetric methods like cyclic, linear-sweep and differential pulse voltammetry. Voltammograms obtained in this study reveal that the electrode exhibit excellent electrocatalytic activity towards oxidation of the drug. The parameters that can affect the peak current at different pH, scan rate and concentration were evaluated. The number of electrons transferred was calculated. The current displayed a wide linear response ranging from 0.5 to $30.0{\mu}M$ with a limit of detection of 56.4 nM. The impact of potential interfering agents was also studied. The electrode displayed wide advantages such as simple sample preparation, appreciable repeatability, reproducibility and also high sensitivity. Furthermore, the feasibility of the proposed method was successfully demonstrated by determining PAH in the spiked human biological sample.

Reaction between Gas-phase Hydrogen Atom and Chemisorbed Bromine Atoms on a Silicon(001)-(2X1) Surface

  • Park, Jong-Keun;Ree, Jong-Baik;Lee, Sang-Kwon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2271-2278
    • /
    • 2007
  • Electron transfer of a redox protein at a bare gold electrode is too slow to observe the redox peaks. A novel Nafion-riboflavin functional membrane was constructed during this study and electron transfer of cytochrome c, superoxide dismutase, and hemoglobin were carried out on the functional membrane-modified gold electrode with good stability and repeatability. The immobilized protein-modified electrodes showed quasireversible electrochemical redox behaviors with formal potentials of 0.150, 0.175, and 0.202 V versus Ag/AgCl for the cytochrome c, superoxide dismutase and hemoglobin, respectively. Whole experiment was carried out in the 50 mM MOPS buffer solution with pH 6.0 at 25 oC. For the immobilized protein, the cathodic transfer coefficients were 0.67, 0.68 and 0.67 and electron transfer-rate constants were evaluated to be 2.25, 2.23 and 2.5 s?1, respectively. Hydrogen peroxide concentration was measured by the peroxidase activity of hemoglobin and our experiment revealed that the enzyme was fully functional while immobilized on the Nafion-riboflavin membrane.

A study of actual planning how to increase IT productivity by COCOMO II Model (IT산업 생산성 향상을 위한 프로젝트 실행계획 수립 방안 연구 - COCOMO II 적용사례)

  • Park, Cheol-Gu;Kim, Chang-Eun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.147-152
    • /
    • 2010
  • Project implementation plan is a blueprint that confirms project performance activities and specifies required man-hour, period and resource imput ratio. Various figures, the results of implementation plan, are predicted through estimation, and because of superiority of objectivity and repeatability, numerical formula-based estimation model is often used overseas. COCOMO model is the representative estimation model whose theories and formulas are publicized and it predicts the total man-hour required for software system development. This model is publicized in "Software Engineering Economics" written by Professor Barry Boehm of the U.S., and is the most widely applied numerical formula-based estimation model. This study is conducted to provide a series of methods that are optimal for KTDS environment by choosing COCOMO II model among various types of COCOMO models. In establishing implementation plan, COCOMO II model alone is not sufficient, it is necessary to link with and apply standard WBS system and standard man-hour. In establishing specific implementation plan, phased standard WBS system in order of the first phase of all the activities implemented in the project, Activity, Task, and Role, and the man-hour put into this should be distributed according to standard ratio from COCOMO II model's total man-hour. This study provides explainations by establishing standard WBS system and linking with COCOMO II model.

Replacement of the in vivo Bioassay for Erythropoietin with the in vitro Bioassay (Erythropoietin in vivo 시험법의 in vitro 대체 시험법 확립)

  • 백상훈;김진만;권기성;박송용;허재욱
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.255-260
    • /
    • 2003
  • In vivo bioassays for biological medicines have been considered final resort to unequivocally assess the biological activities for them because there are some cases in which the biological activities obtained from in vivo bioassay and in vitro bioassay quite differ each other. The in vivo biological activity of EPO depends on its sialic acid contents which confer microheterogeneity-isoforms to this protein. We have devise a method which consists of a in vitro bioassay using BaF3 cell line and a capillary zone electrophoresis (CZE) for the measurement of the EPO isoform distribution. The biological activity of EPO obtained using in vitro bioassay with BaF3 cell line showed good correlation (C.V.(%) 7.34, 5.85, 8,16, 8.08, 8.8) to EPO content measured either spectrophotometric assay (A280 0.1 % =0.743) or radio immunoassay. The assay validation results of in vitro bioassay with 3 lot of in house EPO showed good results to EPO content measured either in vivo assay or radio immunoassay. and also showed good results the robustness of our method in terms of precision, accuracy, repeatability. The isoform distribution for EPO-BRP (1 : 1 mixture of epoetin-${\alpha}$ and epoetin-${\beta}$, European Pharmacopoeia) by CZE method resulted in isoform 2 through isoform 8. The major peaks in electrophoregram were composed of isoform 3 through 7. Our recombinant EPO (epoetin-${\alpha}$) having equivalent in vivo biological activity showed the isoform distribution of isoform 3 through 9. The major peaks consisted of isoform 4 through 8. The peak area of isoform 4 was always smaller than that of isoform 5. The preparations of recombinant epoetin-${\alpha}$ with lower in vivo biological activity than EPO-BRP showed the isoform 2 through 8 in their electrophoregrams whose major peaks consisted of the isoform 3 through 7. The peak area of isoform 4 was larger than that of isoform 5.

Effect of Module Design for a Garment-Type Heart Activity Monitoring Wearable System Based on Non-Contact Type Sensing (비접촉식 심장활동 모니터링 기능 의복형 웨어러블 시스템의 모듈 효과 탐색)

  • Koo, Hye Ran;Lee, Young-Jae;Gi, Sunok;Lee, Seung Pyo;Kim, Kyeng Nam;Kang, Seung Jin;Lee, Jeong-Whan;Lee, Joo Hyeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.3
    • /
    • pp.369-378
    • /
    • 2015
  • Various forms of wearable bio-signal monitoring systems have been developed recently. Acquisition of stable bio-signal data for health care purposes needs to be unconscious and continuous without hindrance to the users' daily activities. The garment type is a suitable form of a wearable bio-signal monitoring system; however, motion artifacts caused by body movement degrade the signal quality during the measurement of bio-signals. It is crucial to stabilize the electrode position to reduce motion artifacts generated when in motion. The problems with motion artifacts remain unresolved despite their significant effect on bio-signal monitoring. This research creates a foundation for the design of garment-type wearable systems for everyday use by finding a method to reduce motion artifacts through modular design. Two distinct garment-type wearable systems (tee-shirt with a motion artifact-reducing module (MARM) and tee-shirt without a MARM) were designed to compare the effects of modular design on the measurement of heart activity in terms of electrode position displacement, signal quality index value, and morphological quality. The tee-shirt with MARM showed superior properties and yielded higher quality signals than the tee-shirt without MARM. In addition, the tee-shirt with MARM showed a better repeatability of the heart activity signals. Therefore, a garment design with MARM is an efficient way to acquire stable bio-signals while in motion.

Electrochemical Behavior of Redox Proteins Immobilized on Nafion-Riboflavin Modified Gold Electrode

  • Rezaei-Zarchi, S.;Saboury, A.A.;Hong, J.;Norouzi, P.;Moghaddam, A.B.;Ghourchian, H.;Ganjali, M.R.;Moosavi-Movahedi, A.A.;Javed, A.;Mohammadian, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2266-2270
    • /
    • 2007
  • Electron transfer of a redox protein at a bare gold electrode is too slow to observe the redox peaks. A novel Nafion-riboflavin functional membrane was constructed during this study and electron transfer of cytochrome c, superoxide dismutase, and hemoglobin were carried out on the functional membrane-modified gold electrode with good stability and repeatability. The immobilized protein-modified electrodes showed quasireversible electrochemical redox behaviors with formal potentials of 0.150, 0.175, and 0.202 V versus Ag/AgCl for the cytochrome c, superoxide dismutase and hemoglobin, respectively. Whole experiment was carried out in the 50 mM MOPS buffer solution with pH 6.0 at 25 oC. For the immobilized protein, the cathodic transfer coefficients were 0.67, 0.68 and 0.67 and electron transfer-rate constants were evaluated to be 2.25, 2.23 and 2.5 s?1, respectively. Hydrogen peroxide concentration was measured by the peroxidase activity of hemoglobin and our experiment revealed that the enzyme was fully functional while immobilized on the Nafion-riboflavin membrane.